001     873932
005     20240313103127.0
024 7 _ |2 Handle
|a 2128/24387
037 _ _ |a FZJ-2020-01105
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)178793
|a Ulianych, Danylo
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Human Brain Project Summit
|c Athens
|d 2020-02-03 - 2020-02-06
|w Greece
245 _ _ |a Designing reproducible analysis workflows for experimental and simulated activity using Elephant
260 _ _ |c 2020
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 ORCID
|a CONFERENCE_POSTER
336 7 _ |2 DataCite
|a Output Types/Conference Poster
336 7 _ |0 PUB:(DE-HGF)24
|2 PUB:(DE-HGF)
|a Poster
|b poster
|m poster
|s 1582287753_17377
|x Invited
520 _ _ |a Neuroscientists have a diversified and constantly growing repertoire of methods to analyze neuronal activity data. Moreover, the growing availability of open data sets containing neuronal activity data puts modelers in a position to perform a more in-depth validation of their models (e.g., [1]) based on the statistical descriptions of the activity observed in experiments. However, the increased possibilities also come at the cost of higher complexity of such analysis and validation processes. Here, we showcase the state of HBP-enabled, tool-based workflow solutions that implement rigorous and well-defined data handling and analysis, as well as model validation schemes, for activity data such as spike trains or local field potentials. We demonstrate methods for data and metadata representation, and its analysis using multiple emerging open-source software tools (e.g., [2-4]). Analysis is performed using the Electrophysiology Analysis Toolkit (Elephant, http://neuralensemble.org/elephant/) as a community-centered analysis framework for parallel, multi-scale activity data developed within the HBP, while validation is carried out using the HBP validation framework, and in particular the NetworkUnit library [5-7]. The interplay between the tools is showcased by integrating them into a robust workflow solution. Concrete examples on how to utilize these tools for scientific discovery in conjunction with the Collaboratory and Knowledgegraph HBP infrastructure components, as well as with the snakemake workflow tool, are given in the context of the use cases of SP3 [8,9].References1. van Albada, S.J. et al. (2018). Front Neuroinf 12, 291.2. Garcia, S. et al. (2014). Front Neuroinf 8, 10.3. Zehl, L. et al. (2016). Front Neuroinf 10, 26.4. Grewe, J. et al. (2011). Front Neuroinf 5, 16.5. Gutzen, R. et al. (2018) Front Neuroinf 12, 90.6. Omar, C. et al. (2014). ICSE Companion 2014, 524–527.7. Sarma, G. P. et al. (2016). F1000 Research, 5:1946.8. Pastorelli, E. et al. (2019) Front. Syst. Neurosci 13, 339. De Bonis, G. et al. (2019) Front. Syst. Neurosci. doi: 10.3389/fnsys.2019.00070 (in press)
536 _ _ |0 G:(DE-HGF)POF3-571
|a 571 - Connectivity and Activity (POF3-571)
|c POF3-571
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-574
|a 574 - Theory, modelling and simulation (POF3-574)
|c POF3-574
|f POF III
|x 1
536 _ _ |0 G:(EU-Grant)785907
|a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
700 1 _ |0 P:(DE-Juel1)171572
|a Gutzen, Robin
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)161295
|a Sprenger, Julia
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Pastorelli, Elena
|b 3
700 1 _ |0 P:(DE-HGF)0
|a De Bonis, Giulia
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Paolucci, Pier Stanislao
|b 5
700 1 _ |0 P:(DE-Juel1)144168
|a Grün, Sonja
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)144807
|a Denker, Michael
|b 7
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/873932/files/HBPSummit_Elephant_poster.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873932/files/HBPSummit_Elephant_poster.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:873932
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)178793
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171572
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161295
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144168
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144807
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
913 1 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 1
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a OPENSCIENCE
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21