000873939 001__ 873939
000873939 005__ 20210130004540.0
000873939 0247_ $$2doi$$a10.3389/fphy.2019.00243
000873939 0247_ $$2Handle$$a2128/24348
000873939 0247_ $$2altmetric$$aaltmetric:74691108
000873939 0247_ $$2WOS$$aWOS:000514378200001
000873939 037__ $$aFZJ-2020-01112
000873939 082__ $$a530
000873939 1001_ $$0P:(DE-HGF)0$$aTeuho, Jarmo$$b0$$eCorresponding author
000873939 245__ $$aMagnetic Resonance-Based Attenuation Correction and Scatter Correction in Neurological Positron Emission Tomography/Magnetic Resonance Imaging—Current Status With Emerging Applications
000873939 260__ $$aLausanne$$bFrontiers Media$$c2020
000873939 3367_ $$2DRIVER$$aarticle
000873939 3367_ $$2DataCite$$aOutput Types/Journal article
000873939 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582032714_521
000873939 3367_ $$2BibTeX$$aARTICLE
000873939 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873939 3367_ $$00$$2EndNote$$aJournal Article
000873939 520__ $$aIn this review, we will summarize the past and current state-of-the-art developments in attenuation and scatter correction approaches for hybrid positron emission tomography (PET) and magnetic resonance (MR) imaging. The current status of the methodological advances for producing accurate attenuation and scatter corrections on PET/MR systems are described, in addition to emerging clinical and research applications. Future prospects and potential applications that benefit from accurate data corrections to improve the quantitative accuracy and clinical applicability of PET/MR are also discussed. Novel clinical and research applications where improved attenuation and scatter correction methods are beneficial are highlighted.
000873939 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000873939 588__ $$aDataset connected to CrossRef
000873939 7001_ $$0P:(DE-HGF)0$$aTorrado-Carvajal, Angel$$b1
000873939 7001_ $$0P:(DE-Juel1)131768$$aHerzog, Hans$$b2$$ufzj
000873939 7001_ $$0P:(DE-HGF)0$$aAnazodo, Udunna$$b3
000873939 7001_ $$0P:(DE-HGF)0$$aKlén, Riku$$b4
000873939 7001_ $$0P:(DE-HGF)0$$aIida, Hidehiro$$b5
000873939 7001_ $$0P:(DE-HGF)0$$aTeräs, Mika$$b6
000873939 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2019.00243$$gVol. 7, p. 243$$p243$$tFrontiers in physics$$v7$$x2296-424X$$y2020
000873939 8564_ $$uhttps://juser.fz-juelich.de/record/873939/files/fphy-07-00243.pdf$$yOpenAccess
000873939 8564_ $$uhttps://juser.fz-juelich.de/record/873939/files/fphy-07-00243.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873939 909CO $$ooai:juser.fz-juelich.de:873939$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131768$$aForschungszentrum Jülich$$b2$$kFZJ
000873939 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000873939 9141_ $$y2020
000873939 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873939 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873939 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000873939 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873939 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873939 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873939 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873939 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000873939 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873939 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873939 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000873939 980__ $$ajournal
000873939 980__ $$aVDB
000873939 980__ $$aUNRESTRICTED
000873939 980__ $$aI:(DE-Juel1)INM-4-20090406
000873939 9801_ $$aFullTexts