000873940 001__ 873940
000873940 005__ 20230111074227.0
000873940 0247_ $$2doi$$a10.1002/hbm.24497
000873940 0247_ $$2ISSN$$a1065-9471
000873940 0247_ $$2ISSN$$a1097-0193
000873940 0247_ $$2Handle$$a2128/28501
000873940 0247_ $$2altmetric$$aaltmetric:54618689
000873940 0247_ $$2pmid$$apmid:30604898
000873940 0247_ $$2WOS$$aWOS:000683897100002
000873940 037__ $$aFZJ-2020-01113
000873940 082__ $$a610
000873940 1001_ $$0P:(DE-HGF)0$$aChen, Zhaolin$$b0$$eCorresponding author
000873940 245__ $$aMR-PET head motion correction based on co-registration of multicontrast MR images
000873940 260__ $$aNew York, NY$$bWiley-Liss$$c2021
000873940 3367_ $$2DRIVER$$aarticle
000873940 3367_ $$2DataCite$$aOutput Types/Journal article
000873940 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635159963_1501
000873940 3367_ $$2BibTeX$$aARTICLE
000873940 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873940 3367_ $$00$$2EndNote$$aJournal Article
000873940 520__ $$aHead motion is a major source of image artefacts in neuroimaging studies and can lead to degradation of the quantitative accuracy of reconstructed PET images. Simultaneous magnetic resonance-positron emission tomography (MR-PET) makes it possible to estimate head motion information from high-resolution MR images and then correct motion artefacts in PET images. In this article, we introduce a fully automated PET motion correction method, MR-guided MAF, based on the co-registration of multicontrast MR images. The performance of the MR-guided MAF method was evaluated using MR-PET data acquired from a cohort of ten healthy participants who received a slow infusion of fluorodeoxyglucose ([18-F]FDG). Compared with conventional methods, MR-guided PET image reconstruction can reduce head motion introduced artefacts and improve the image sharpness and quantitative accuracy of PET images acquired using simultaneous MR-PET scanners. The fully automated motion estimation method has been implemented as a publicly available web-service
000873940 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000873940 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000873940 588__ $$aDataset connected to CrossRef
000873940 7001_ $$0P:(DE-HGF)0$$aSforazzini, Francesco$$b1
000873940 7001_ $$0P:(DE-HGF)0$$aBaran, Jakub$$b2
000873940 7001_ $$0P:(DE-HGF)0$$aClose, Thomas$$b3
000873940 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b4
000873940 7001_ $$0P:(DE-HGF)0$$aEgan, Gary F.$$b5
000873940 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.24497$$n13$$p4081-4091$$tHuman brain mapping$$v42$$x1065-9471$$y-
000873940 8564_ $$uhttps://juser.fz-juelich.de/record/873940/files/Postprint_Chen_et_al-2019-Human_Brain_Mapping.pdf$$yOpenAccess
000873940 8564_ $$uhttps://juser.fz-juelich.de/record/873940/files/hbm.24497.pdf$$yOpenAccess
000873940 8564_ $$uhttps://juser.fz-juelich.de/record/873940/files/Postprint_Chen_et_al-2019-Human_Brain_Mapping.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873940 909CO $$ooai:juser.fz-juelich.de:873940$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b4$$kFZJ
000873940 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000873940 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000873940 9141_ $$y2021
000873940 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873940 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000873940 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2017
000873940 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873940 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873940 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873940 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873940 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873940 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873940 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000873940 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873940 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873940 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873940 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000873940 980__ $$ajournal
000873940 980__ $$aVDB
000873940 980__ $$aI:(DE-Juel1)INM-4-20090406
000873940 980__ $$aUNRESTRICTED
000873940 9801_ $$aFullTexts