| Hauptseite > Publikationsdatenbank > MR-PET head motion correction based on co-registration of multicontrast MR images > print |
| 001 | 873940 | ||
| 005 | 20230111074227.0 | ||
| 024 | 7 | _ | |a 10.1002/hbm.24497 |2 doi |
| 024 | 7 | _ | |a 1065-9471 |2 ISSN |
| 024 | 7 | _ | |a 1097-0193 |2 ISSN |
| 024 | 7 | _ | |a 2128/28501 |2 Handle |
| 024 | 7 | _ | |a altmetric:54618689 |2 altmetric |
| 024 | 7 | _ | |a pmid:30604898 |2 pmid |
| 024 | 7 | _ | |a WOS:000683897100002 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-01113 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Chen, Zhaolin |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a MR-PET head motion correction based on co-registration of multicontrast MR images |
| 260 | _ | _ | |a New York, NY |c 2021 |b Wiley-Liss |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1635159963_1501 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Head motion is a major source of image artefacts in neuroimaging studies and can lead to degradation of the quantitative accuracy of reconstructed PET images. Simultaneous magnetic resonance-positron emission tomography (MR-PET) makes it possible to estimate head motion information from high-resolution MR images and then correct motion artefacts in PET images. In this article, we introduce a fully automated PET motion correction method, MR-guided MAF, based on the co-registration of multicontrast MR images. The performance of the MR-guided MAF method was evaluated using MR-PET data acquired from a cohort of ten healthy participants who received a slow infusion of fluorodeoxyglucose ([18-F]FDG). Compared with conventional methods, MR-guided PET image reconstruction can reduce head motion introduced artefacts and improve the image sharpness and quantitative accuracy of PET images acquired using simultaneous MR-PET scanners. The fully automated motion estimation method has been implemented as a publicly available web-service |
| 536 | _ | _ | |a 573 - Neuroimaging (POF3-573) |0 G:(DE-HGF)POF3-573 |c POF3-573 |f POF III |x 0 |
| 536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Sforazzini, Francesco |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Baran, Jakub |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Close, Thomas |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 4 |
| 700 | 1 | _ | |a Egan, Gary F. |0 P:(DE-HGF)0 |b 5 |
| 773 | _ | _ | |a 10.1002/hbm.24497 |0 PERI:(DE-600)1492703-2 |n 13 |p 4081-4091 |t Human brain mapping |v 42 |y - |x 1065-9471 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/873940/files/Postprint_Chen_et_al-2019-Human_Brain_Mapping.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/873940/files/hbm.24497.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/873940/files/Postprint_Chen_et_al-2019-Human_Brain_Mapping.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:873940 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131794 |
| 913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Neuroimaging |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b HUM BRAIN MAPP : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|