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Abstract
Head motion is a major source of image artefacts in neuroimaging studies and can lead to degra-

dation of the quantitative accuracy of reconstructed PET images. Simultaneous magnetic

resonance-positron emission tomography (MR-PET) makes it possible to estimate head motion

information from high-resolution MR images and then correct motion artefacts in PET images.

In this article, we introduce a fully automated PET motion correction method, MR-guided MAF,

based on the co-registration of multicontrast MR images. The performance of the MR-guided

MAF method was evaluated using MR-PET data acquired from a cohort of ten healthy partici-

pants who received a slow infusion of fluorodeoxyglucose ([18-F]FDG). Compared with conven-

tional methods, MR-guided PET image reconstruction can reduce head motion introduced

artefacts and improve the image sharpness and quantitative accuracy of PET images acquired

using simultaneous MR-PET scanners. The fully automated motion estimation method has been

implemented as a publicly available web-service.
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1 | INTRODUCTION

The lengthy duration of the simultaneous magnetic resonance-

positron emission tomography (MR-PET) brain imaging experiments

can lead to head motion induced artefacts in the PET images (Chen

et al., 2018). Even sub-millimetre motion which is not manifest as visi-

ble image artefacts can result in systematic and regionally specific

biases in MRI anatomical estimations (Alexander-Bloch et al., 2016).

Significant effects are observed in fMRI functional connectivity

measurements due to head motion (Satterthwaite et al., 2012). With

recent improvements in PET scanner resolution, head motion is

increasingly becoming one of the major causes of image quality degra-

dation, including reduction of spatial resolution and erroneous estima-

tion of radio-ligand concentrations.

A widely used technique for correcting head motion in PET and

PET-CT scanners is the multiple acquisition frame (MAF) method

(Picard & Thompson, 1997). The MAF method subdivides the PET raw

data (i.e., list-mode data) into a number of short duration temporal

frames, with the frames then co-registered to correct for head motion

under the assumption that intra-frame motion is negligible.Zhaolin Chen and Francesco Sforazzini contributed equally as first authors.
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External motion tracking devices can further be installed to moni-

tor motion (see Maclaren, Herbst, Speck, & Zaitsev, 2013 for a

detailed review). These devices can provide excellent motion estima-

tion accuracy and temporal sampling of motion parameters at millisec-

onds temporal resolution, but in general they are complex to setup

and often have patient compliance issues. Additionally, MR compati-

bility and PET attenuation aspects of an external device have to be

considered thoroughly for application to a hybrid MR-PET scanner.

Because of the complexity in workflow and potential patient compli-

ance issue, external device motion correction methods are currently

not commonly used in routine clinical and experimental studies.

Data-driven methods form another category of motion correction

methods in PET imaging. Recently, Thielemans et al. applied the prin-

cipal component analysis (PCA) method to detect head movements

directly from PET sinogram or list-mode data, and then used the esti-

mated motion position information to guide the MAF framing process

(Schleyer et al., 2015; Thielemans, Schleyer, Dunn, Marsden, & Man-

jeshwar, 2013). The PCA motion detection method is based on the

identification of changes in the principal components of the PET time

activity curve, and compared with the conventional MAF technique,

the PCA guided MAF has demonstrated to reduce intra-frame motion

in PET image reconstruction. However, the PCA motion detection can

only work when the tissue biological kinetics are stable and therefore

any signal change in the tissue time activity curve is due to motion.

This assumption is invalid in dynamic PET data acquisition where

tracer uptake in the brain increases with time. Furthermore, PET

based methods rely on co-registration of PET images which have

intrinsic lower spatial resolution and anatomical contrast compared

with MR images.

Recently, slow infusion based dynamic fluorodeoxyglucose

([18-F]FDG) PET imaging has shown promising results for investigat-

ing dynamic brain metabolism (Hahn et al., 2016; Villien et al., 2014).

In these methods, PET list-mode data are acquired for 60–90 min and

then binned into 1-min frames. Due to the long acquisition time,

motion correction is critical in the dynamic PET imaging. Conventional

PET data-driven approaches cannot accurately estimate the motion

since the radioactivity distribution in the brain accumulates and

changes over time. Therefore, a reliable motion correction method is

still required.

Simultaneous MR-PET makes it possible to model head motion

from high-resolution MR images and then correct motion artefacts

in PET images. While PET data driven methods may work for

[18-F]FDG PET when signal to noise ratio (SNR) is sufficient, the

MR-based motion correction can be advantageous in many applica-

tions including low dose FDG PET and other tracers such as

receptor-targeted PET where spatial SNR is limited. Echo Planar

Imaging (EPI) MRI volumes are often used as image navigators to

track head movements. In Blood-Oxygen-Level Dependent func-

tional MRI (BOLD fMRI) experiments, dynamic EPIs are acquired in

every repetition time (TR = 2 s or less), which provide motion esti-

mates for PET data correction (Catana et al., 2011; Ullisch et al.,

2012). Single EPI volumes can also be inserted in between MR

sequences/scans which are often several minutes apart (Keller

et al., 2015). The specific advantages of using EPI navigators to

perform motion correction include their high temporal resolution

(i.e., in seconds) and spatial resolution and SNR for accurate image

registration. Many software toolboxes (e.g., FSL, SPM, ANTS, etc.)

have been introduced to co-register fMRI EPI volumes, and these

software tools have achieved excellent image co-registration accu-

racy. Ardekani, Bachman, and Helpern (2001) demonstrated that

excellent image co-registration accuracy in the order of 0.20 mm

can be obtained when the image SNR is greater than 5. However,

inserting EPI acquisitions amongst MR sequences takes additional

imaging time. In recent work, EPI navigators have also been

embedded directly into T1 weighted MR sequences (i.e., in every

repetition time TR) for intra-sequence motion correction (Tisdall

et al., 2016). However, this method adds additional acquisition time

to the minimum TR and is not routinely available for other MR

sequences.

Our aim in this research was to develop a fully automated MR-

guided method based on co-registration of multicontrast MR

images with different resolution and imaging parameters. The MR-

guided PET motion correction method has the following advan-

tages: (a) a fully automated method that does not require any

image or k-space navigators, (b) provides excellent motion estima-

tion accuracy due to the high spatial resolution of the MR images

and (c) it can be applied in both static and dynamic PET experi-

ments. The introduced method, MR-guided MAF, optimises the MR

image registration for all types of MR image contrasts (e.g., T1, T2,

EPI BOLD, Diffusion Weighted Imaging (DWI), Arterial Spin Label-

ling (ASL), etc.). The inclusion of different MR image contrasts

makes it possible to correct motion during the complete neuroim-

aging examination. Similar to BOLD EPIs, DWI and ASL sequences

are also dynamic scans and can be used to extract motion esti-

mates with high temporal resolution. Anatomical T1 and T2

weighted MR acquisitions normally have long scanning duration

(e.g., 5–10 min), and motion estimates from them can be limited in

temporal resolution. Nevertheless, in a comparable approach Keller

et al. (2015) demonstrated improved PET image quality using navi-

gators which are several minutes apart. The MR-guided MAF

extracts motion parameters which are then used to rebin PET raw

data into a multiple acquisition frame reconstruction. The PET

attenuation map can also be re-aligned to match the head position

for each frame to further improve the quality of the PET image

reconstruction. The MR-guided MAF method was evaluated on a

volunteer with controlled head motion as well as on a cohort of

10 subjects who were instructed to minimise their head motion

during data acquisition. Participants were slowly administered

260 MBq [18-F]FDG PET at constant infusion rate, and to the best

of our knowledge, the impact of MR-based PET motion correction

has not been previously investigated in a cohort of subjects under-

going a slow infusion FDG PET experiment. The motion correction

performance of the MR-guided MAF method was evaluated using a

static (single frame) PET image reconstruction in the cohort. The

impact of the PET attenuation map re-alignment was investigated

in the motion controlled experiment. Improvements in the image

sharpness and accuracy of PET image quantification during the

dynamic PET image reconstruction were also investigated.

4082 CHEN ET AL.



2 | METHODS

The MR-guided MAF method contains two main steps:

(a) multicontrast MR co-registration and (b) the MR-guided MAF PET

image reconstruction. In the first step, the motion parameters are esti-

mated by image registration and concatenation of transformation

matrices. These motion parameters are then used to guide the recon-

struction of static or dynamic PET images in the second step. An over-

view of the MR-guided MAF method is shown in Figure 1.

2.1 | Motion estimation based on multicontrast MR
image registration

2.1.1 | Selection of reference image for registration

A reference image was first selected for registration of the multicon-

trast MR images. The selected reference image was chosen to mini-

mise the bias introduced by image registration. T1-weighted contrasts

are typically used as the anatomical reference due to their good grey/

white matter contrast. In this work, we compared the registration

imprecision from both 3D isotropic T1-weighted and T2-weighted

images as references.

In order to determine the optimal anatomical reference image

between the T1 and T2 weighted images, an IIDA brain phantom (Iida

et al., 2013) was used to acquire T1 weighted 3D Magnetization-

Prepared Rapid Gradient-Echo (MPRAGE), T2 weighted 3D Fluid-

Attenuated Inversion Recovery (FLAIR), Proton Density

(PD) weighted, Diffusion Weighted Imaging (DWI) based on SE-EPI

(Spin Echo-Echo Planar Imaging) and Blood-Oxygen-Level Dependent

functional MRI (BOLD fMRI) using GE-EPI (Gradient Echo EPI) and 2D

Gradient Echo (GRE) (see Table 1 for detailed acquisition parameters).

The brain phantom was fixed inside the head coil and kept free of

motion during the acquisition. Each MR image contrast was then rig-

idly (6� of freedom) registered to the T1 and T2 weighted images. The

acquisition was repeated four times to calculate the standard errors of

the mean registration bias. In this work, we selected T2 weighted

FLAIR image as the reference image (see Results section).

2.1.2 | Preprocessing of images

To improve image registration accuracy and robustness, brain extrac-

tion (BET, Smith, 2002) was applied to each MR image.

For EPI acquisitions (i.e., BOLD and diffusion weighted), a geo-

metric distortion correction was applied using an opposite-phase

encoding EPI image. The distortion correction was implemented using

the FSL-TOPUP toolkit (Andersson, Skare, & Ashburner, 2003).

The T2 weighted image was segmented into grey and white mat-

ters and CSF using FAST (Zhang, Brady, & Smith, 2001). The seg-

mented white matter boundaries were used to improve the

registration accuracy of the BOLD and Arterial Spin Labelling (ASL)

MR images to the reference T2 weighted images.

FIGURE 1 Overview of the MR-guided MAF method

TABLE 1 MR image acquisition parameters for the motion instructed volunteer and the phantom experiments

Scan TR TE Matrix Slices Resolution

UTE 11.94 0.07, 2.46 192 × 192 192 1.5 × 1.5 × 1.5

T1 MPRAGE 1,640 2.34 256 × 256 176 1.0 × 1.0 × 1.0

T2 FLAIR 3,200 418 256 × 256 176 1.0 × 1.0 × 1.0

Proton density 3,800 16 128 × 128 34 1.0 × 1.0 × 2.0

ASL 2,500 13 64 × 64 9 4.0 × 4.0 × 10.0

BOLD fMRI 3,200 20 64 × 64 60 3.5 × 3.5 × 3.0

DWI 13,100 110 96 × 96 60 2.5 × 2.5 × 2.5

2D GRE 466 4.92, 7.38 64 × 64 44 3.0 × 3.0 × 3.0

TR, repetition time [ms]; TE, echo time [ms]; Res, resolution [mm3].
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2.1.3 | Multicontrast image registration

Motion matrices containing the rotational and translational parame-

ters for the anatomical MR images (i.e., T1, T2 and PD) and multivo-

lume images (i.e., BOLD, ASL and DWI) were estimated as per the

following steps:

1. All MR images (the first volume if a multivolume MRI) were nor-

malised to the image space of the reference, accounting for field-

of-view and images resolution differences.

2. a) For anatomical MRI, each image contrast was rigidly registered

to the T2 weighted reference image using FSL FLIRT (Jenkinson &

Smith, 2001).

b) For multivolume MRI, only the first image volume was rigidly

registered to the reference. The registration steps for BOLD fMRI

and ASL were optimised using white matter boundaries from the

T2 weighted images. Each of the remaining volumes were then

aligned to the first volume using MCFLIRT (Jenkinson, Bannister,

Brady, & Smith, 2002) for ASL and BOLD fMRI, and using EDDY

(Andersson & Sotiropoulos, 2016) for DWI (with a b0 volume as

the first volume).

3. a) For anatomical MRI, the motion matrix of the corresponding

image contrast was calculated by multiplying the inverse of the

transformation matrices in step 1) and the registration matrices in

step 2a).

b) For multivolume MRI, the motion matrix of the corresponding

image volume was calculated by multiplying the inverse of each of

the registration matrix obtained in step 2b).

Rotational and translational parameters, as well as the mean dis-

placement, were derived from the estimated motion matrices. During

MR idling times, the last known motion estimates were used. For the

anatomical MRI images (e.g., T1 and T2 weighted) which take several

minutes to acquire, the estimated motion parameters represent an

estimate of the averaged motion throughout the acquisition period.

2.2 | Multiple acquisition frame correction

2.2.1 | MR-guided MAF

The mean displacement parameter was used to guide the multiple

acquisition frame (MAF) algorithm in the subdivision of the PET list-

mode data into multiple motion correction frames. Specifically, the fol-

lowing two criteria were used to form a new motion correction frame

when motion occurred:

• The absolute difference between the mean displacement values

of two consecutive volumes was greater than a predefined

threshold parameter (d1). This criterion determined whether a

sudden movement occurred. The parameter d1 was set to 2 mm

in this work.

• Mean displacement between the current volume and the refer-

ence was greater than a predefined threshold parameter (d2). This

criterion determined whether a gradual motion (e.g., the subject’s

head position is slowly drifting) occurred. The parameter d2 was

also set to 2 mm in this work.

The choices of the threshold d1 and d2 values were a compromise

between the computational time and the motion estimation accuracy,

with 2 mm chosen because it was less than the voxel size of the

reconstructed PET images. Furthermore, the minimum duration for a

motion correction frame was 1 min to ensure the motion correction

frame had sufficient radioactivity counts to reconstruct a PET image.

μ-Map realignment

The attenuation correction μ-map was re-aligned to the head position

for each motion correction frame prior to the PET image reconstruc-

tion. All the MR derived motion parameters within one motion correc-

tion frame were averaged to obtain an averaged motion estimate

which was then applied to the original μ-map data.

Timestamps, re-aligned attenuation maps and PET list-mode data

were used with the PET image reconstruction software (see

Section 2.3) to reconstruct one PET image per motion correction

frame. The final motion corrected static PET image was calculated

using the frame duration weighted average of the motion corrected

PET images. The dynamic PET images were reconstructed by re-

binning the list-mode data into 90 frames (1 min per frame), and the

averaged motion parameters within each of these frames were used

to correct for head motion.

2.2.2 | Fixed frame MAF

The fixed frame MAF is often used to compare motion correction

methods (Schleyer et al., 2015). In the fixed frame MAF, the PET list-

mode data were first re-binned into 1 min length frames, which were

then reconstructed and registered to a reference image using FSL-

FLIRT (normalised mutual information as cost function) to generate a

motion corrected dynamic PET image series. The final PET image was

computed as the average of the motion corrected images. The 1 min

frame length was required in order to have sufficient counts for the

PET image reconstruction and image co-registration.

2.3 | PET image reconstruction

PET image reconstruction was performed with the following proce-

dure. List-mode data were reconstructed with an ordinary Poisson

ordered-subsets expectation maximisation algorithm (OP-OSEM:

21 subsets, 3 iterations) and point spread function (PSF) correction

using 344 × 344 × 127 matrix with a slice thickness 2.03 mm and a

pixel size 2.09 mm. The reconstructed PET data were smoothed using

a 3D Gaussian filter (5 mm in all directions). The image reconstruction

was implemented using the scanner software.

2.4 | Data acquisition

A total of 11 healthy human subjects were acquired on a MR-PET

scanner (Siemens Biograph mMR, Erlangen, Germany) equipped with

a 20-channel head and neck coil at Monash Biomedical Imaging, Mel-

bourne, Australia. The human scans were approved by the Monash

University human research ethics committee.
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2.4.1 | Motion controlled study

One healthy volunteer was injected with a bolus of 110 MBq [18-F]

FDG, and instructed to move their head during the scan at specific times.

Head motion was introduced during the EPI BOLD, as well as between

structural scans (e.g., T1 and T2 weighted scans). MR images were

acquired (see Table 1 for acquisition parameters). PET list-mode data

were acquired for 60 min. The PET attenuation map was acquired using

the ultrashort echo time (UTE) sequence on the Siemens Biograph mMR.

2.4.2 | Group study – Slow infusion based static and
dynamic PET imaging

Ten subjects were administered 260 MBq FDG at a constant slow

infusion rate of 36 mL/hr over 90 min. MR images were acquired as

per Table 3. Prior to data acquisition, the subjects were instructed to

keep movements to minimum during the 90-min examination.

2.5 | PET image quality assessment

2.5.1 | Static PET image reconstruction – Image sharpness

Relative image sharpness was used to quantify the motion correction

improvements in the motion corrected PET images. The image sharp-

ness was calculated using the mean absolute Laplacian of Gaussian

(LOG) (Schleyer et al., 2015), defined as:

Sharpness ¼ 1
N

X

r

H rð Þ?f rð Þj j

where, r is the voxel index in the image f(r), convolved with H, a 9 ×

9 × 9 kernel describing the 3D LoG with standard deviation of 1.9.

The group sharpness index was calculated as the mean and standard

errors across the 10 subjects in the slow infusion study.

2.5.2 | Dynamic PET image reconstruction – DICE
coefficients

To assess the quality of slow infusion dynamic PET data, DICE coeffi-

cients were calculated with the following steps. Firstly, the grey mat-

ter (GM) were segmented from the T2 weighted reference image

using FAST with a probability threshold of 0.5 (Zhang et al., 2001).

The DICE coefficients for the GM region were calculated for images

reconstructed using the MR-guided MAF method, the fixed-MAF

method and the original motion corrupted images as follows:

DICE coeff ¼ 2 GMref \ GMPETð Þ
GMrefj j + j GMPET j

where, GMref is the grey matter mask from the T2 reference image,

GMPET is the grey matter mask segmented from each of dynamic PET

images (Hatt, Cheze le Rest, Turzo, Roux, & Visvikis, 2009). The opera-

tor \ is the intersection operator between two spatial masks. The

DICE coefficient ranges from 0 (no spatial overlap between two

images) to 1 (complete spatial overlap).

2.6 | Software availability

The MR-guided MAF method has been implemented in a fully

automated software package, written in Python using the Arcana

framework (Close et al., 2018), which is available as web-service:

http://mbi-tools.erc.monash.edu/motion_correction. The source code

for the package can be found at: https://github.com/MonashBI/

banana/releases/tag/v0.2.0.

3 | RESULTS

3.1 | Selection of MR reference image

The image registration imprecisions of the different MR image con-

trasts registered to the T1 weighted MPRAGE and the T2 weighted

FLAIR, respectively, are compared in Table 2. The mean registration

errors for both the T1 and T2 weighted images were less than 1 mm.

The optimal reference image was determined by comparing the mean

registration errors for two contrasts, with theT2 FLAIR reference

demonstrating a lower mean registration error based on the MR

images acquired in this study.

3.2 | Motion controlled study results

The results for the single subject controlled head motion study, where

the head movements were instructed multiple times during the exami-

nation, are given in Figures 2–4. The mean displacement plot

(Figure 2) demonstrates a maximum movement close to 60 mm.

Translation and rotation motion parameters are shown in Supporting

Information Figures S1a and S1b. The image from the MR-guided

MAF with μ-map realignment shows symmetric radiotracer uptake in

the two hemispheres of the brain (Figure 3a). Images reconstructed

without μ-map realignment for the MR-guided MAF (Figure 3b), the

fixed MAF (Figure 3c) and without motion correction (Figure 3d) dem-

onstrate asymmetric radiotracer uptake in the brain hemispheres,

which is also evident in line profiles drawn across the hemispheres in

each image (Figure 3e). The asymmetric radiotracer uptake is almost

certainly due to misalignment in sinogram space between the μ-map

and the head position (see Supporting Information Figure S2). Using

the sharpness index calculation, the images from the MR-guided MAF

with μ-map realignment had an approximately 23% increase in image

sharpness compared with original motion corrupted images, and an

approximately 4% increase compared with the MR-guided MAF. Fur-

thermore, the fixed-MAF images showed 21% greater blurriness com-

pared with the fully corrected images.

3.3 | Group study results

The group of 10 participants were instructed to keep motion to a min-

imum during the 90-min long MR-PET scan. The estimated motion

parameters are shown in Table 4. Overall, a 2–5 mm mean

TABLE 2 Comparison of image registration bias (in mm) using

T1-MPRAGE and T2-FLAIR images as references

T1-MPRAGE T2-FLAIR

GRE-EPI 0.92 � 0.24 0.54 � 0.21

Proton density 0.51 � 0.10 0.36 � 0.11

SE-EPI 0.52 � 0.04 0.23 � 0.04

2D GRE 0.96 � 0.17 0.39 � 0.10
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displacement was observed in the group. Figure 4 compares the group

averaged results from different motion correction methods with the

nonmotion corrected images. For each method, the reconstructed

images for all subjects were co-registered together to derive the

group averaged image. The fully motion corrected image (i.e., MR-

guided MAF with μ-map realignment, Figure 4a) depicts improved

grey and white matter contrast compared with the fixed-MAF (shown

in Figure 4b) and the nonmotion corrected images (shown in

Figure 4c). The comparison of line profiles (shown in Figure 4d) shows

that the best grey and white matter delineation is observed from the

fully corrected image. All three images show symmetric tracer uptake

in both hemispheres, which is in agreement with the estimated rela-

tively small mean displacements.

Figure 5 shows an averaged sharpness index (mean and standard

errors) of the 10 participants. The fully corrected images demonstrate a

7% increase in mean sharpness index when compared with fixed-MAF,

and 12% increase when compared with nonmotion corrected images.

These differences are all statistically significant (***p < 0.005, *p < 0.05).

3.4 | Dynamic PET image reconstruction

The segmented grey matter from a PET frame overlaid to the refer-

ence image was shown in Figure 6. The DICE coefficients were

FIGURE 2 Mean displacement plot for the motion instructed volunteer demonstrating the head movement with respect to the T2 weighted

reference image, as detected by the multicontrast registration method. The yellow/white alternation bands indicate the durations of successive
motion correction frames

FIGURE 3 Motion correction results for the controlled motion experiment. Images in panels (a)–(d) show the reconstructed PET images using

different reconstruction methods. The plots in panel (e) show the signal intensity variation along the line profiles in panel (a)–(d)
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calculated and used to investigate the accuracy of motion correction

in the grey matter region. Apart from the first 20 min, where the

counts in the PET images were too low, the DICE coefficients of the

MR-guided motion corrected images were constant around 0.65

(Figure 6b). The DICE coefficients of the frames aligned using the

standard fixed-MAF approach, were lower compared with those cal-

culated from the MR-guided MAF method. For both motion corrupted

and fixed-MAF corrected images, the DICE coefficients fluctuated sig-

nificantly toward the end of the 90-min acquisition where the head

motion was greater (see mean displacement plot in Supporting Infor-

mation Figure S3). In addition, the percentage difference in the time

activity curve between the MR-guided MAF and the fixed-MAF varies

between 1 and 5%, while that between the MR-guided MAF and the

frames without motion correction reached 15% (see Supporting Infor-

mation Figures S4a,b).

The difference in the DICE coefficients between the nonmotion

corrected and the MR-guided motion corrected frames were signifi-

cantly correlated with the mean displacement of the head position

(Figure 7), demonstrating the accuracy of the MR-guided MAF

approach.

4 | DISCUSSION

The aim of this study was to develop a fully automated MR-based

method to estimate and correct for head motion in simultaneous MR-

PET imaging. The MR-guided MAF method relies on co-registration of

multicontrast MR images. One advantage of the MR-guided method is

that no additional imaging navigators or dedicated EPI volumes are

acquired for tracking motion (Keller et al., 2015; Ullisch et al., 2012),

thereby maintaining optimal usage of the scanning time, and simplifi-

cation of the experimental workflow. Using both bolus injection and

slow constant infusion FDG PET datasets, we have shown that the

method removes head motion induced images artefacts, improved

image sharpness and provided more uniform tracer uptake across the

brain. Compared with nonmotion corrected images, the relative image

sharpness increase using MR-guided MAF was approximately 25% in

the motion controlled study and an average of approximately 12% in

the subject cohort. The method using either MR-guided MAF with or

without μ-map alignment performed better than the standard fixed-

MAF, most likely because of intra-frame motion that is not corrected

in the fixed-MAF method. The MR-guided method can be expected to

FIGURE 4 Comparison of the motion correction results for the group averaged image. The images in panels (a)–(c) show the reconstructed PET

images using the three different reconstruction methods. The plots in panel (d) show the signal intensity variation along the line profiles in panels
(a)–(c)

TABLE 3 MR image acquisition parameters for the slow infusion FDG PET experiments

Scan TR TE Matrix Slices Resolution

UTE 11.94 0.07, 2.46 192 × 192 192 1.5 × 1.5 × 1.5

T1 MPRAGE 1,640 2.34 256 × 256 176 1.0 × 1.0 × 1.0

T2 FLAIR 5,000 395 256 × 256 160 1.0 × 1.0 × 1.0

SWI 31 5.70, 10.97,
16.24, 21.25, 26.78

384 × 384 104 0.6 × 0.6 × 1.2

Proton density 4,800 11 128 × 128 35 1.8 × 1.8 × 4.0

ASL 4,800 11 64 × 64 23 3.5 × 3.5 × 4.0

BOLD fMRI 2,450 30 64 × 64 44 3.0 × 3.0 × 3.0

2D GRE 466 4.92, 7.38 64 × 64 44 3.0 × 3.0 × 3.0

TR, repetition time [ms]; TE, echo time [ms]; Res, resolution [mm3].
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be robust and accurate even when the PET tracer activity is low, for

example, during the early phase of the slow infusion experiments and

high temporal resolution dynamic PET image reconstruction

(e.g., 20 s).

Our findings highlight the importance of the re-alignment of the

μ-map before PET image reconstruction if large motion occurs. Head

motion causes a misalignment between the original head position dur-

ing the attenuation map measurement and the head position during

PET data acquisition. Consequently, without re-alignment of the

μ-map, the reconstructed PET image has regions with inaccurate

attenuation correction that lead to a significant quantification error of

the tracer uptake. These inaccuracies can be recovered using the MR-

aligned attenuation map, as shown by our results. In an [18-F]FDG

PET dementia study, Chen et al. (2018) used the time-weighted aver-

aged coil μ-map to account for motion during image reconstruction.

With the conventional fixed-MAF approach, re-alignment of the

μ-map requires two reconstructions which can significantly increases

the computation time and propagate the reconstruction errors.

The robustness and accuracy of the MR-guided MAF method has

been demonstrated using datasets from a group of 10 subjects. With

motion between 2 and 5 mm, the MR-guided MAF achieves an

increase in image sharpness around 7% compared with the fixed-MAF

correction, and around 12% with respect to the nonmotion corrected

image. Compared with fixed-MAF, MR-guided MAF can more effec-

tively correct intra-frame motion and requires fewer re-binned frames.

Since the method forms fewer frames compared with the 1 min

binned fixed-MAF method, less computation time is required.

MR-based motion correction has the advantage that the MR

image co-registration is more accurate than using PET images due to

the high spatial resolution and high contrast to noise ratio in MR

images. Using both T1 and T2 weighted images as reference images,

the image registration imprecision was less than 1 mm, which is signif-

icantly less than the PET image resolution. Furthermore, PET data

driven motion correction methods (Schleyer et al., 2015; Thielemans

et al., 2013) are heavily dependent on PET radioactivity count rates,

which is problematic when dealing with short temporal frames and

FIGURE 5 Comparison of the averaged (mean and standard errors)

sharpness indices for the experimental group of 10 participants

FIGURE 6 Comparison of the motion correction results between the

MR-guided MAF, fixed-MAF and for the images without motion
correction, for a dynamic PET reconstruction for one test subject. The
Dice scores are shown in (b) using grey matter masks shown in (a)

TABLE 4 The average mean displacement [mm] and the average six motion parameters (three for rotation [mrad] and three for translation [mm])

for the 10 subjects used in group analysis

Average mean
displacement

Average
rotation x

Average
rotation y

Average
rotation z

Average
translation x

Average
translation y

Average
translation z

Subject 1 1.98 � 0.59 10.3 � 9.7 7.4 � 4.0 −6.7 � 3.7 0.17 � 0.08 −0.30 � 0.06 −1.74 � 0.50

Subject 2 5.60 � 2.27 17.1 � 14.3 12.5 � 8.2 −4.5 � 23.8 0.58 � 0.27 −1.25 � 0.39 4.92 � 2.62

Subject 3 4.05 � 1.33 7.8 � 6.1 −12.3 � 5.9 −1.5 � 5.2 0.42 � 1.51 −0.68 � 0.12 −3.63 � 1.12

Subject 4 5.74 � 3.22 39.1 � 20.3 9.7 � 4.5 −10 � 5.1 0.03 � 0.18 −0.30 � 0.30 5.21 � 3.20

Subject 5 4.18 � 1.13 58.2 � 20.6 −9.5 � 7.0 −20.2 � 8.8 0.50 � 0.51 −0.64 � 0.22 2.37 � 0.92

Subject 6 4.88 � 1.38 15.7 � 12.5 −17.1 � 13.1 0 � 6.7 0.97 � 1.32 −0.41 � 0.44 4.33 � 1.26

Subject 7 1.82 � 0.61 18.6 � 6.3 4.1 � 1.5 2.2 � 2.6 0.09 � 0.08 −0.40 � 0.14 −1.45 � 0.57

Subject 8 5.94 � 1.51 26.3 � 11.8 7.6 � 6.5 3.7 � 11.0 0.19 � 0.11 −1.45 � 0.39 5.47 � 1.61

Subject 9 5.85 � 2.54 33.5 � 17.3 −28.9 � 6.8 36.4 � 7.2 −1.16 � 0.31 −0.42 � 0.19 4.71 � 2.70

Subject 10 2.56 � 0.96 26.1 � 15.4 −0.8 � 10.3 −28.6 � 11.1 1.10 � 0.19 −0.52 � 0.14 0.70 � 0.66
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low dose applications. Conversely MR motion correction using EPI

scans can provide a temporal resolution of 2 s or less. Several articles in

the literature have used MR navigators to correct motion in PET imag-

ing of the brain. EPI based fMRI were firstly used for motion navigators,

and demonstrated improved PET image quality in several healthy sub-

jects (Catana et al., 2011; Ullisch et al., 2012). In the same work, Catana

et al. (2011) also implemented and evaluated cloverleaf MRI navigators

(CLNs) to reduce motion artefacts. Instead of using dynamic EPI naviga-

tors, Keller et al. (2015) inserted EPI volumes that were several minutes

apart to exact motion information during the complete PET examina-

tion. Chen et al. (2018) employed both fMRI navigators and EPI naviga-

tors that embedded inside the T1 weighted images to improve PET

quantification accuracy in a group of FDG PET dementia patients. In

our work, we further extended the MR-based PET motion correction,

and optimised for other MR contrasts (DWI/DTI, ASL, etc.). This

approach offers a motion correction strategy during the complete

course of PET examination and for most popular MR neuroimaging

sequences. The quantitative improvement in PET images was further

evaluated in slow infusion based FDG PET datasets.

In our work, the motion correction has been implemented as a

post reconstruction step (i.e., MAF), and there exist methods that

apply motion correction prior or during image reconstruction. These

methods are developed based on the consideration that better motion

correction can be achieved at coincidence event level. Two early stud-

ies from Catana et al. (2011) and Ullisch et al. (2012) both applied

motion correction to PET list-mode data prior to image reconstruc-

tion. They compared the list-mode motion correction with the post

reconstruction based correction using the same motion estimates, and

the final reconstructed images were found to be comparable. The

advantage of applying motion correction prior to image reconstruction

is that it can reduce the total number of reconstruction jobs, resulting

in overall faster data processing. On the other hand, the advantage of

using the MAF based method is the simple implementation and appli-

cation in clinical and research MR-PET scanners. Although this work

presents an MAF based motion correction, the motion parameters

estimated using the multicontrast MR image registration can poten-

tially be fed into list-mode reconstruction. Jiao et al. (2017) proposed

a method for joint estimation of PET kinetic parameters and correc-

tion of head motion during image reconstruction. Their method

demonstrated improved accuracy in estimation of kinetic parameters,

especially at low radioactivity doses and when large motion occurred,

compared with the post reconstruction MAF method. Their work

highlighted that PET data driven MAF methods suffer from inaccurate

motion estimation when SNR is poor.

In this article, we developed and applied the MR-guided MAF

method to slow infusion dynamic PET imaging. Our results have

shown the importance of motion correction for dynamic imaging

approaches. Indeed, head movements can lead to large differences in

the time activity curves, and the DICE score measures before and

after the MR-based motion correction. The difference between the

time activity curves was correlated well with the motion estimates.

4.1 | Limitation and future work

The current method uses an MR-derived attenuation map rather than

a 68-Germanium based PET transmission scan or a CT X-ray derived

attenuation map. Previous work by ourselves and others has demon-

strated the accuracy of head image segmentation and the assignment

of tissue attenuation values using advanced MR methods (Baran et al.,

2018). However, irrespective of the absolute accuracy of the attenua-

tion maps used in the PET image reconstructions, the advantages of

the fully motion corrected method (i.e., the MR-guided MAF with

μ-map realignment) have been clearly demonstrated. One limitation of

the current method is the absence of motion estimation during ana-

tomical MR scans (e.g., T1 or T2 weighted). These scans can take sev-

eral minutes, and motion may occur during these acquisitions. One

possible solution is to insert navigator echoes (Tisdall et al., 2012) in

the anatomical MR sequences. The navigators (image or k-space) can

provide motion estimates in every hundreds of milliseconds to several

seconds, depending on the repetition time of the sequence. Another

possible solution is to use PET raw data driven motion correction dur-

ing these MR sequences and during periods without MR data

acquisition.

5 | CONCLUSIONS

In this article, we have introduced a fully automated MR-based motion

correction method and software for simultaneous MR-PET imaging.

FIGURE 7 Plots of the Dice score differences and the mean displacement between the MR-based motion corrected and the nonmotion

corrected PET images in panel (a). Panel (b) shows the correlation scatter plot between the Dice score differences and the mean displacement
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Using in vivo datasets, the introduced MR-guided MAF method has

shown significantly improved PET image contrast and sharpness com-

pared with both nonmotion corrected images and images from the

conventional fixed-MAF method. The new method has also been

applied to a slow FDG infusion dynamic PET study of brain metabo-

lism, to produce significant improvements in PET image quality and

accuracy of whole brain and regional time activity curve estimation.
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