000873941 001__ 873941
000873941 005__ 20210130004541.0
000873941 0247_ $$2doi$$a10.1002/ima.22401
000873941 0247_ $$2ISSN$$a0899-9457
000873941 0247_ $$2ISSN$$a1098-1098
000873941 0247_ $$2Handle$$a2128/25586
000873941 0247_ $$2WOS$$aWOS:000510566600001
000873941 037__ $$aFZJ-2020-01114
000873941 082__ $$a530
000873941 1001_ $$00000-0001-6199-2312$$aPawar, Kamlesh$$b0$$eCorresponding author
000873941 245__ $$aApplication of compressed sensing using chirp encoded 3D GRE and MPRAGE sequences
000873941 260__ $$aNew York, NY [u.a.]$$bWiley$$c2020
000873941 3367_ $$2DRIVER$$aarticle
000873941 3367_ $$2DataCite$$aOutput Types/Journal article
000873941 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599570306_3001
000873941 3367_ $$2BibTeX$$aARTICLE
000873941 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873941 3367_ $$00$$2EndNote$$aJournal Article
000873941 520__ $$aAn implementation of Non‐Fourier chirp‐encoding in 3D Gradient Recalled Echo (GRE), susceptibility‐weighted imaging (SWI) and Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequences is presented with compressive sensing reconstruction. 3D GRE and MPRAGE sequences were designed, in which the phase encoding (PE) direction was encoded with spatially selective chirp encoding Radio Frequency (RF) pulses, while the slice and the readout directions were Fourier encoded using gradients. During each excitation along the PE direction, a different spatially‐selective RF excitation pulse was used to encode the PE direction with a complete set of unitary chirp encoding basis. Multichannel compressive sensing reconstruction on the undersampled in vivo data demonstrated that images reconstructed from chirp encoded data were able to preserve the spatial resolution better than the Fourier encoding. The mean Structural Similarity (SSIM) across five subjects at the acceleration factor of 6, for chirp encoded MPRAGE was 0.934 compared to 0.912 for Fourier encoded MPRAGE. The implementation of prospective undersampling demonstrated the feasibility of using chirp encoding in clinical practice for accelerated imaging. The minimum intensity projection of the compressive sensing (CS) reconstructed susceptibility weighted images revealed that chirp encoding is able to delineate small vessels better than the Fourier encoding with the SSIM of 0.960 for chirp encoding compared to the SSIM of 0.949 for the Fourier encoding. Improved performance of chirp encoding for CS reconstruction and SWI, along with the feasibility of implementation makes them a practical candidate for clinical MRI scans.
000873941 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000873941 588__ $$aDataset connected to CrossRef
000873941 7001_ $$0P:(DE-HGF)0$$aChen, Zhaolin$$b1
000873941 7001_ $$0P:(DE-HGF)0$$aZhang, Jingxin$$b2
000873941 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b3
000873941 7001_ $$0P:(DE-HGF)0$$aEgan, Gary F.$$b4
000873941 773__ $$0PERI:(DE-600)2009087-0$$a10.1002/ima.22401$$gp. ima.22401$$n3$$p592-604$$tInternational journal of imaging systems and technology$$v30$$x1098-1098$$y2020
000873941 8564_ $$uhttps://juser.fz-juelich.de/record/873941/files/Postprint_2020_Pawar_Imaging_Systems_Tech.pdf$$yPublished on 2020-02-03. Available in OpenAccess from 2021-02-03.
000873941 8564_ $$uhttps://juser.fz-juelich.de/record/873941/files/Postprint_2020_Pawar_Imaging_Systems_Tech.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-03. Available in OpenAccess from 2021-02-03.
000873941 909CO $$ooai:juser.fz-juelich.de:873941$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873941 9101_ $$0I:(DE-HGF)0$$60000-0001-6199-2312$$aExternal Institute$$b0$$kExtern
000873941 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000873941 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000873941 9141_ $$y2020
000873941 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873941 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000873941 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873941 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000873941 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J IMAG SYST TECH : 2017
000873941 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873941 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873941 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873941 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873941 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873941 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873941 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873941 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000873941 980__ $$ajournal
000873941 980__ $$aVDB
000873941 980__ $$aUNRESTRICTED
000873941 980__ $$aI:(DE-Juel1)INM-4-20090406
000873941 9801_ $$aFullTexts