000873942 001__ 873942
000873942 005__ 20210130004541.0
000873942 0247_ $$2doi$$a10.1103/PhysRevMaterials.4.024404
000873942 0247_ $$2Handle$$a2128/24345
000873942 0247_ $$2WOS$$aWOS:000513551200004
000873942 037__ $$aFZJ-2020-01115
000873942 082__ $$a530
000873942 1001_ $$0P:(DE-Juel1)168211$$aBrinker, Sascha$$b0$$eCorresponding author$$ufzj
000873942 245__ $$aSpin, atomic, and interatomic orbital magnetism induced by 3 d nanostructures deposited on transition metal surfaces
000873942 260__ $$aCollege Park, MD$$bAPS$$c2020
000873942 3367_ $$2DRIVER$$aarticle
000873942 3367_ $$2DataCite$$aOutput Types/Journal article
000873942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600087532_27411
000873942 3367_ $$2BibTeX$$aARTICLE
000873942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873942 3367_ $$00$$2EndNote$$aJournal Article
000873942 520__ $$aWe present a first-principles study of the surface magnetism induced by Cr, Mn, Fe, and Co adatoms on the (111) surfaces of Rh, Pd, Ag, Ir, Pt, and Au. We first describe how the different contributions to the surface magnetism enter the magnetic stray field, with special attention paid to the induced orbital moments. Then we present results for the spin and orbital magnetic moments of the adatoms, and for the induced surface spin and orbital magnetic moments, the latter being further divided into atomic and interatomic contributions. We investigate how the surface magnetism is determined by the chemical nature of the elements involved, such as the filling of the magnetic d-orbitals of the adatoms and the properties of the itinerant electrons at the surface (whether they are sp- or d-like, and whether the spin-orbit interaction is relevant), and how it is modified if the magnetic adatoms are brought together to form a cluster, with Cr, Mn, Fe, and Co trimers on Pt(111) as an example. We also explore the impact of computational approximations, such as the distance between the adatom and the Pt(111) surface, or confinement effects due to the finite thickness of the slab used to model it. Our discussion of the magnetic stray field generated by a single adatom and its environment suggests a possible way of disentangling the induced surface magnetism from the adatom one, which could be feasible with scanning nitrogen-vacancy-center microscopy.
000873942 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000873942 536__ $$0G:(DE-Juel1)jias1c_20171101$$aFirst-principles investigation of long range effects in magnetic nanostructures (jias1c_20171101)$$cjias1c_20171101$$fFirst-principles investigation of long range effects in magnetic nanostructures$$x1
000873942 588__ $$aDataset connected to CrossRef
000873942 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b1$$ufzj
000873942 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b2
000873942 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.4.024404$$gVol. 4, no. 2, p. 024404$$n2$$p024404$$tPhysical review materials$$v4$$x2475-9953$$y2020
000873942 8564_ $$uhttps://juser.fz-juelich.de/record/873942/files/PhysRevMaterials.4.024404.pdf$$yOpenAccess
000873942 8564_ $$uhttps://juser.fz-juelich.de/record/873942/files/PhysRevMaterials.4.024404.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873942 909CO $$ooai:juser.fz-juelich.de:873942$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168211$$aForschungszentrum Jülich$$b0$$kFZJ
000873942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b1$$kFZJ
000873942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b2$$kFZJ
000873942 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000873942 9141_ $$y2020
000873942 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873942 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000873942 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2017
000873942 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873942 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873942 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873942 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873942 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873942 920__ $$lyes
000873942 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000873942 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000873942 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000873942 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000873942 980__ $$ajournal
000873942 980__ $$aVDB
000873942 980__ $$aI:(DE-Juel1)IAS-1-20090406
000873942 980__ $$aI:(DE-Juel1)PGI-1-20110106
000873942 980__ $$aI:(DE-82)080009_20140620
000873942 980__ $$aI:(DE-82)080012_20140620
000873942 980__ $$aUNRESTRICTED
000873942 9801_ $$aFullTexts