000873990 001__ 873990
000873990 005__ 20210130004548.0
000873990 0247_ $$2doi$$a10.1029/2019JD031662
000873990 0247_ $$2ISSN$$a0148-0227
000873990 0247_ $$2ISSN$$a2156-2202
000873990 0247_ $$2ISSN$$a2169-897X
000873990 0247_ $$2ISSN$$a2169-8996
000873990 0247_ $$2Handle$$a2128/24500
000873990 0247_ $$2WOS$$aWOS:000519602000005
000873990 037__ $$aFZJ-2020-01152
000873990 082__ $$a550
000873990 1001_ $$00000-0003-1970-9004$$aHeale, C. J.$$b0$$eCorresponding author
000873990 245__ $$aSecondary Gravity Waves Generated by Breaking Mountain Waves over Europe
000873990 260__ $$aHoboken, NJ$$bWiley$$c2020
000873990 3367_ $$2DRIVER$$aarticle
000873990 3367_ $$2DataCite$$aOutput Types/Journal article
000873990 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583501987_27455
000873990 3367_ $$2BibTeX$$aARTICLE
000873990 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873990 3367_ $$00$$2EndNote$$aJournal Article
000873990 520__ $$aA strong mountain wave, observed over Central Europe on the 12th Jan 2016, is simulated in 2D under 2 fixed background wind conditions representing opposite tidal phases. The aim of the simulation is to investigate the breaking of the mountain wave and subsequent generation of non‐primary waves in the upper atmosphere. The model results show that the mountain wave first breaks as it approaches a mesospheric critical level creating turbulence on horizontal scales of 8‐30km. These turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from reaching the thermosphere by the tidal winds which act like a filter. Initial secondary waves which can reach the thermosphere range from 60‐120km in horizontal scale and are influenced by the scales of the horizontal and vertical forcing associated with wave breaking at mountain wave zonal phase width, and horizontal wavelength scales. Large scale non‐primary waves dominate over the whole duration of the simulation with horizontal scales of 107‐300km and periods of 11‐22 minutes. The thermosphere winds heavily influence the time‐averaged spatial distribution of wave forcing in the thermosphere, which peaks at 150km altitude and occurs both westward and eastward of the source in the 2 UT background simulation and primarily eastward of the source in the 7 UT background simulation. The forcing amplitude is ~2x that of the primary mountain wave breaking and dissipation. This suggests that non‐primary waves play a significant role in gravity waves dynamics and improved understanding of the thermospheric winds is crucial to understanding their forcing distribution.
000873990 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000873990 588__ $$aDataset connected to CrossRef
000873990 7001_ $$00000-0002-7076-0449$$aBossert, K.$$b1
000873990 7001_ $$00000-0002-6459-005X$$aVadas, S. L.$$b2
000873990 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b3
000873990 7001_ $$0P:(DE-HGF)0$$aDörnbrack, A.$$b4
000873990 7001_ $$0P:(DE-HGF)0$$aStober, G.$$b5
000873990 7001_ $$00000-0002-7616-439X$$aSnively, J. B.$$b6
000873990 7001_ $$00000-0002-7878-0110$$aJacobi, C.$$b7
000873990 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2019JD031662$$gp. e2019JD031662 -$$n5$$pe2019JD031662 -$$tJournal of geophysical research / D Atmospheres D$$v125$$x2169-897X$$y2020
000873990 8564_ $$uhttps://juser.fz-juelich.de/record/873990/files/Heale_et_al-2020-Journal_of_Geophysical_Research__Atmospheres.pdf$$yPublished on 2020-02-19. Available in OpenAccess from 2020-08-19.
000873990 8564_ $$uhttps://juser.fz-juelich.de/record/873990/files/manuscript.pdf$$yPublished on 2020-02-19. Available in OpenAccess from 2020-08-19.
000873990 8564_ $$uhttps://juser.fz-juelich.de/record/873990/files/manuscript.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-19. Available in OpenAccess from 2020-08-19.
000873990 8564_ $$uhttps://juser.fz-juelich.de/record/873990/files/Heale_et_al-2020-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-19. Available in OpenAccess from 2020-08-19.
000873990 909CO $$ooai:juser.fz-juelich.de:873990$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b3$$kFZJ
000873990 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000873990 9141_ $$y2020
000873990 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873990 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000873990 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-ATMOS : 2017
000873990 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873990 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873990 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873990 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873990 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873990 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873990 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873990 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873990 920__ $$lyes
000873990 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000873990 980__ $$ajournal
000873990 980__ $$aVDB
000873990 980__ $$aUNRESTRICTED
000873990 980__ $$aI:(DE-Juel1)JSC-20090406
000873990 9801_ $$aFullTexts