001     873990
005     20210130004548.0
024 7 _ |a 10.1029/2019JD031662
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-897X
|2 ISSN
024 7 _ |a 2169-8996
|2 ISSN
024 7 _ |a 2128/24500
|2 Handle
024 7 _ |a WOS:000519602000005
|2 WOS
037 _ _ |a FZJ-2020-01152
082 _ _ |a 550
100 1 _ |a Heale, C. J.
|0 0000-0003-1970-9004
|b 0
|e Corresponding author
245 _ _ |a Secondary Gravity Waves Generated by Breaking Mountain Waves over Europe
260 _ _ |a Hoboken, NJ
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583501987_27455
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A strong mountain wave, observed over Central Europe on the 12th Jan 2016, is simulated in 2D under 2 fixed background wind conditions representing opposite tidal phases. The aim of the simulation is to investigate the breaking of the mountain wave and subsequent generation of non‐primary waves in the upper atmosphere. The model results show that the mountain wave first breaks as it approaches a mesospheric critical level creating turbulence on horizontal scales of 8‐30km. These turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from reaching the thermosphere by the tidal winds which act like a filter. Initial secondary waves which can reach the thermosphere range from 60‐120km in horizontal scale and are influenced by the scales of the horizontal and vertical forcing associated with wave breaking at mountain wave zonal phase width, and horizontal wavelength scales. Large scale non‐primary waves dominate over the whole duration of the simulation with horizontal scales of 107‐300km and periods of 11‐22 minutes. The thermosphere winds heavily influence the time‐averaged spatial distribution of wave forcing in the thermosphere, which peaks at 150km altitude and occurs both westward and eastward of the source in the 2 UT background simulation and primarily eastward of the source in the 7 UT background simulation. The forcing amplitude is ~2x that of the primary mountain wave breaking and dissipation. This suggests that non‐primary waves play a significant role in gravity waves dynamics and improved understanding of the thermospheric winds is crucial to understanding their forcing distribution.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bossert, K.
|0 0000-0002-7076-0449
|b 1
700 1 _ |a Vadas, S. L.
|0 0000-0002-6459-005X
|b 2
700 1 _ |a Hoffmann, L.
|0 P:(DE-Juel1)129125
|b 3
700 1 _ |a Dörnbrack, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stober, G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Snively, J. B.
|0 0000-0002-7616-439X
|b 6
700 1 _ |a Jacobi, C.
|0 0000-0002-7878-0110
|b 7
773 _ _ |a 10.1029/2019JD031662
|g p. e2019JD031662 -
|0 PERI:(DE-600)2016800-7
|n 5
|p e2019JD031662 -
|t Journal of geophysical research / D Atmospheres D
|v 125
|y 2020
|x 2169-897X
856 4 _ |y Published on 2020-02-19. Available in OpenAccess from 2020-08-19.
|u https://juser.fz-juelich.de/record/873990/files/Heale_et_al-2020-Journal_of_Geophysical_Research__Atmospheres.pdf
856 4 _ |y Published on 2020-02-19. Available in OpenAccess from 2020-08-19.
|u https://juser.fz-juelich.de/record/873990/files/manuscript.pdf
856 4 _ |y Published on 2020-02-19. Available in OpenAccess from 2020-08-19.
|x pdfa
|u https://juser.fz-juelich.de/record/873990/files/manuscript.pdf?subformat=pdfa
856 4 _ |y Published on 2020-02-19. Available in OpenAccess from 2020-08-19.
|x pdfa
|u https://juser.fz-juelich.de/record/873990/files/Heale_et_al-2020-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:873990
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES-ATMOS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21