000874013 001__ 874013
000874013 005__ 20240712084525.0
000874013 0247_ $$2doi$$a10.1088/2515-7639/ab6fd0
000874013 0247_ $$2Handle$$a2128/24422
000874013 0247_ $$2WOS$$aWOS:000560433000003
000874013 037__ $$aFZJ-2020-01173
000874013 082__ $$a530
000874013 1001_ $$0P:(DE-Juel1)162256$$aStaub, Florian$$b0$$eCorresponding author
000874013 245__ $$aEffect of reabsorption and photon recycling on photoluminescence spectra and transients in lead-halide perovskite crystals
000874013 260__ $$aBristol$$bIOP Publishing$$c2020
000874013 3367_ $$2DRIVER$$aarticle
000874013 3367_ $$2DataCite$$aOutput Types/Journal article
000874013 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582893342_2070
000874013 3367_ $$2BibTeX$$aARTICLE
000874013 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874013 3367_ $$00$$2EndNote$$aJournal Article
000874013 520__ $$aExplaining the time-dependent evolution of photoluminescence spectra of halide perovskite single crystals after pulsed excitation requires the consideration of a range of physical mechanisms, including electronic transport, recombination and reabsorption. The latter process of reabsorption and re-generation of electron-hole pairs from a photon created by radiative recombination in the single crystal itself is termed photon recycling and has been a highly controversial topic. We use photoluminescence experiments performed under different illumination conditions combined with numerical simulations that consider photon recycling to show which parameters affect temporal decays, spectral shifts and differences in the illumination direction. In addition, we use numerical simulations with and without photon recycling to understand the relative importance of charge-carrier transport and photon recycling. We conclude that under most relevant illumination conditions and times after the pulse, electronic transport is more important than photon recycling for the spectral behavior of the transients. However, inclusion of photon recycling is imperative for the understanding of the absolute density of electrons and holes present in the crystal during a certain time after the pulse.
000874013 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000874013 588__ $$aDataset connected to CrossRef
000874013 7001_ $$0P:(DE-HGF)0$$aAnusca, Irina$$b1
000874013 7001_ $$00000-0002-6895-1334$$aLupascu, Doru C$$b2
000874013 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b3
000874013 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b4
000874013 773__ $$0PERI:(DE-600)2950970-1$$a10.1088/2515-7639/ab6fd0$$gVol. 3, no. 2, p. 025003 -$$n2$$p025003 -$$tJPhys materials$$v3$$x2515-7639$$y2020
000874013 8564_ $$uhttps://juser.fz-juelich.de/record/874013/files/Staub_2020_J_Phys_Mater.pdf$$yOpenAccess
000874013 8564_ $$uhttps://juser.fz-juelich.de/record/874013/files/Staub_2020_J_Phys_Mater.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874013 909CO $$ooai:juser.fz-juelich.de:874013$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162256$$aForschungszentrum Jülich$$b0$$kFZJ
000874013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b3$$kFZJ
000874013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b4$$kFZJ
000874013 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000874013 9141_ $$y2020
000874013 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874013 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874013 920__ $$lyes
000874013 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000874013 9801_ $$aFullTexts
000874013 980__ $$ajournal
000874013 980__ $$aVDB
000874013 980__ $$aUNRESTRICTED
000874013 980__ $$aI:(DE-Juel1)IEK-5-20101013
000874013 981__ $$aI:(DE-Juel1)IMD-3-20101013