001     874013
005     20240712084525.0
024 7 _ |a 10.1088/2515-7639/ab6fd0
|2 doi
024 7 _ |a 2128/24422
|2 Handle
024 7 _ |a WOS:000560433000003
|2 WOS
037 _ _ |a FZJ-2020-01173
082 _ _ |a 530
100 1 _ |a Staub, Florian
|0 P:(DE-Juel1)162256
|b 0
|e Corresponding author
245 _ _ |a Effect of reabsorption and photon recycling on photoluminescence spectra and transients in lead-halide perovskite crystals
260 _ _ |a Bristol
|c 2020
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582893342_2070
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Explaining the time-dependent evolution of photoluminescence spectra of halide perovskite single crystals after pulsed excitation requires the consideration of a range of physical mechanisms, including electronic transport, recombination and reabsorption. The latter process of reabsorption and re-generation of electron-hole pairs from a photon created by radiative recombination in the single crystal itself is termed photon recycling and has been a highly controversial topic. We use photoluminescence experiments performed under different illumination conditions combined with numerical simulations that consider photon recycling to show which parameters affect temporal decays, spectral shifts and differences in the illumination direction. In addition, we use numerical simulations with and without photon recycling to understand the relative importance of charge-carrier transport and photon recycling. We conclude that under most relevant illumination conditions and times after the pulse, electronic transport is more important than photon recycling for the spectral behavior of the transients. However, inclusion of photon recycling is imperative for the understanding of the absolute density of electrons and holes present in the crystal during a certain time after the pulse.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Anusca, Irina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lupascu, Doru C
|0 0000-0002-6895-1334
|b 2
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 3
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 4
773 _ _ |a 10.1088/2515-7639/ab6fd0
|g Vol. 3, no. 2, p. 025003 -
|0 PERI:(DE-600)2950970-1
|n 2
|p 025003 -
|t JPhys materials
|v 3
|y 2020
|x 2515-7639
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874013/files/Staub_2020_J_Phys_Mater.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874013/files/Staub_2020_J_Phys_Mater.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874013
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162256
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21