000874014 001__ 874014
000874014 005__ 20240610121045.0
000874014 0247_ $$2doi$$a10.1103/PhysRevD.100.124002
000874014 0247_ $$2ISSN$$a0556-2821
000874014 0247_ $$2ISSN$$a1089-4918
000874014 0247_ $$2ISSN$$a1538-4500
000874014 0247_ $$2ISSN$$a1550-2368
000874014 0247_ $$2ISSN$$a1550-7998
000874014 0247_ $$2ISSN$$a2470-0010
000874014 0247_ $$2ISSN$$a2470-0029
000874014 0247_ $$2Handle$$a2128/24576
000874014 0247_ $$2WOS$$aWOS:000499980700007
000874014 0247_ $$2altmetric$$aaltmetric:66239793
000874014 037__ $$aFZJ-2020-01174
000874014 082__ $$a530
000874014 1001_ $$0P:(DE-Juel1)167127$$aGegelia, J.$$b0
000874014 245__ $$aVacuum energy in the effective field theory of general relativity. II. Inclusion of fermions and a comment on the QCD contribution
000874014 260__ $$aMelville, NY$$bInst.812068$$c2019
000874014 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2019-12-02
000874014 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2019-12-01
000874014 3367_ $$2DRIVER$$aarticle
000874014 3367_ $$2DataCite$$aOutput Types/Journal article
000874014 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1584458690_22060
000874014 3367_ $$2BibTeX$$aARTICLE
000874014 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874014 3367_ $$00$$2EndNote$$aJournal Article
000874014 520__ $$aRecently, in the framework of a two-loop order calculation for an effective field theory of scalar and vector fields interacting with the metric field, we have shown that for the cosmological constant term which is fixed by the condition of vanishing vacuum energy the graviton remains massless and there exists a self-consistent effective field theory of general relativity defined on a flat Minkowski background. In the current paper, we extend the two-loop analysis for an effective field theory of fermions interacting with the gravitational field and obtain an analogous result. We also address the issues of fine-tuning of the strong interaction contribution to the vacuum energy and the compatibility of chiral symmetry in the light quark sector with the consistency of the effective field theory of general relativity in a flat Minkovski background.
000874014 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000874014 542__ $$2Crossref$$i2019-12-02$$uhttps://creativecommons.org/licenses/by/4.0/
000874014 588__ $$aDataset connected to CrossRef
000874014 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b1$$eCorresponding author
000874014 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.100.124002$$bAmerican Physical Society (APS)$$d2019-12-02$$n12$$p124002$$tPhysical Review D$$v100$$x2470-0010$$y2019
000874014 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.100.124002$$gVol. 100, no. 12, p. 124002$$n12$$p124002$$tPhysical review / D$$v100$$x2470-0010$$y2019
000874014 8564_ $$uhttps://juser.fz-juelich.de/record/874014/files/1909.02733.pdf$$yOpenAccess
000874014 8564_ $$uhttps://juser.fz-juelich.de/record/874014/files/PhysRevD.100.124002.pdf$$yOpenAccess
000874014 8564_ $$uhttps://juser.fz-juelich.de/record/874014/files/1909.02733.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874014 8564_ $$uhttps://juser.fz-juelich.de/record/874014/files/PhysRevD.100.124002.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874014 909CO $$ooai:juser.fz-juelich.de:874014$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b1$$kFZJ
000874014 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000874014 9141_ $$y2020
000874014 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874014 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874014 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874014 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2016
000874014 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874014 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874014 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874014 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874014 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874014 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874014 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874014 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874014 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874014 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000874014 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000874014 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000874014 9801_ $$aFullTexts
000874014 980__ $$ajournal
000874014 980__ $$aVDB
000874014 980__ $$aUNRESTRICTED
000874014 980__ $$aI:(DE-Juel1)IAS-4-20090406
000874014 980__ $$aI:(DE-Juel1)IKP-3-20111104
000874014 981__ $$aI:(DE-Juel1)IAS-4-20090406
000874014 999C5 $$1S. Weinberg$$2Crossref$$oS. Weinberg The Quantum Theory of Fields 2005$$tThe Quantum Theory of Fields$$y2005
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.50.3874
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0954-3899/42/10/103102
000874014 999C5 $$1M. J. G. Veltman$$2Crossref$$oM. J. G. Veltman 1975$$y1975
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.064047
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.72.124007
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3847/2041-8213/833/2/L30
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.61.1
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.046021
000874014 999C5 $$1L. D. Landau$$2Crossref$$oL. D. Landau The Classical Theory of Fields 1975$$tThe Classical Theory of Fields$$y1975
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-nucl-102115-044644
000874014 999C5 $$1N. D. Birrell$$2Crossref$$oN. D. Birrell Quantum Fields in Curved Space 1984$$tQuantum Fields in Curved Space$$y1984
000874014 999C5 $$1G. ’t Hooft$$2Crossref$$oG. ’t Hooft 1974$$y1974
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(91)90130-D
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2016.06.008
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0003-4916(84)90242-2
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.030001
000874014 999C5 $$1J. F. Donoghue$$2Crossref$$9-- missing cx lookup --$$a10.1017/CBO9780511803512$$y2014
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.61.024038
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.78.064034
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.12942/lrr-2009-4
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.104040
000874014 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.86.084013