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Recently in the framework of a two-loop order calculation for an effective field theory of scalar
and vector fields interacting with the metric field we have shown that for the cosmological constant
term which is fixed by the condition of vanishing vacuum energy the graviton remains massless and
there exists a self-consistent effective field theory of general relativity defined on a flat Minkowski
background. In the current paper we extend the two-loop analysis for an effective field theory of
fermions interacting with the gravitational field and obtain an analogous result. We also address the
issues of fine tuning of the strong interaction contribution to the vacuum energy and the compati-
bility of chiral symmetry in the light quark sector with the consistency of the effective field theory
of general relativity in a flat Minkowski background.

PACS numbers: 04.20.Cv, 03.70.+k.

I. INTRODUCTION

It is widely accepted that at low energies the physics of the fundamental particles can be adequately described by
effective field theories (EFTs), with the Standard Model being its leading order approximation [1]. Gravitation can
also be included in this framework by considering the effective Lagrangian of metric fields interacting with matter
fields [2, 3]. Within this approach the metric field is represented as the Minkowski background plus the graviton field
and the cosmological constant is usually set equal to zero, see, e.g., Ref. [4]. For a non-vanishing cosmological constant
term Λ the graviton propagator has a pole corresponding to a massive ghost mode [5]. As the cosmological constant
term is not suppressed by any symmetry of the effective theory, setting it to zero does not solve the problem, because
the radiative corrections re-generate the massive ghost [6]. It has been shown in Ref. [6] that one can represent the
cosmological constant as a power series in ~ and adjust the coefficients of this series such that the unphysical mass of
the graviton is cancelled to all orders in the loop expansion. Thus, to take into account a cosmological constant term
other than obtained in Ref. [6] it is necessary to consider an EFT in a curved background field. As shown in Ref. [7]
by imposing the equations of motion with respect to the non-trivial background graviton field, the mass term of the
graviton is removed at tree level. A systematic study of the issue by including the quantum corrections requires an
EFT on a curved background metric which, to the best of our knowledge, is not available yet.
The accelerating expansion of the universe (see, e.g., Ref. [8] and references therein) leaves us with a huge discrepancy

between the measured small value of the effective cosmological constant and its theoretical estimation [9]. In our
opinion if there exists any condition that uniquely fixes the value of the cosmological constant, then it is most
natural to expect that it must be imposed by demanding that the energy of the physical vacuum state of the theory
describing the universe is exactly zero. In our recent work [10] we calculated two-loop order contributions of a scalar
and vector fields to the vacuum expectation value of the full four-momentum in a simplified version of the Abelian
model with spontaneous symmetry breaking, considered also in Ref. [6]. We found that as a result of a non-trivial
cancellation between different diagrams the requirement of vanishing vacuum energy leads to consistency conditions
of the considered EFT, first obtained in Ref. [6]. In the current work we extend this two-loop analysis and calculate
the contributions from fermions. For the energy-momentum tensor of the gravitational field we use the definition
of the energy-momentum pseudotensor and the full four-momentum given in the classic textbook by Landau and
Lifshitz [11].
Further, in the light of the above discussion we re-address the issue of the fine tuning of the strong interaction

contribution to the vacuum energy and compatibility of the results of Ref. [6] with the chiral symmetry of quantum
chromodynamics (QCD).
Our work is orginized as follows: In section II we specify the details of the considered EFT of fermions interacting

with a gravitational field and calculate one- and two-loop contributions to the vacuum energy and the vacuum
expectation value of the gravitational field. In section III we discuss the QCD contribution to vacuum energy and the
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problem of the fine-tuning following Ref. [12]. We summarize in section IV and the appendix contains the Feynman
rules involving fermion fields and two-loop integrals required in our calculations.

II. VACUUM ENERGY IN AN EFT OF FERMIONS INTERACTING WITH GRAVITONS ON A

MINKOWSKI BACKGROUND

Effective field theory of matter interacting with gravity is described by the most general effective Lagrangian of
gravitational and matter fields, which is invariant under general coordinate transformations and the other underlying
symmetries,

S =

∫

d4x
√−g {Lgr(g) + Lm(g, ψ)}

=

∫

d4x
√−g

{

2

κ2
(R− 2Λ) + Lgr,ho(g) + Lm(g, ψ)

}

= Sgr(g) + Sm(g, ψ), (1)

where κ2 = 32πG, with Newton’s constant G = 6.70881 · 10−39 GeV−2, ψ and gµν denote the matter and metric
fields, respectively, g = det gµν , Λ is the cosmological constant and R denotes the scalar curvature. Further, Lm(g, ψ)
is the effective Lagrangian of the matter fields interacting with gravity. Experimental evidence suggests that self-
interaction terms of the gravitational field with higher orders of derivatives, represented by Lgr,ho(g), as well as the
non-renormalizable interactions of Lm(g, ψ) give contributions to physical quantities which are heavily suppressed for
energies accessible by current accelerators. Vielbein tetrad fields have to be introduced for an EFT with fermions.
To be specific, consider the action of the fermions interacting with the gravitational field given by

Sm =

∫

d4x
√−g

{

1

2
ψ̄ ieµaγ

a∇µψ − 1

2
∇µψ̄ ie

µ
aγ

aψ −mψ̄ψ

}

+ LHO, (2)

where LHO denotes the interactions of higher order, the specific form of which is not important for the current work
as we will not include them in our calculations. The covariant derivative acting on the fermion field has the form

∇µψ = ∂µψ − ωab
µ σabψ,

∇µψ̄ = ∂µψ̄ + ψ̄ σab ω
ab
µ , (3)

where σab =
1
4 [γa, γb] and

ωab
µ = −gνλeaλ

(

∂µe
b
ν − ebσΓ

σ
µν

)

,

Γλ
αβ =

1

2
gλσ (∂αgβσ + ∂βgασ − ∂σgαβ) . (4)

The vielbein fields satisfy the following relations:

eaµe
b
νηab = gµν , eµae

ν
bη

ab = gµν ,

eaµe
b
νg

µν = gab, eµae
ν
bgµν = gab. (5)

The energy-momentum tensor corresponding to Eq. (2) has the form [13]:

T µν
m =

i

4

(

ψ̄ eaµγ
a∇νψ + ψ̄ eaνγ

a∇µψ −∇µψ̄ eaνγ
aψ −∇νψ̄ eaµγ

aψ
)

+ T µν
HO, (6)

where T µν
HO corresponds to LHO. Note that we consider one fermion field with mass m, the extension to more fermion

fields with equal or different masses is straightforward.
For the gravitational field we have

T µν
gr (g) =

4

κ2
Λ gµν + T µν

LL(g) , (7)



3

FIG. 1: Diagrams contributing to the vacuum expectation value of the graviton field. The filled circle corresponds to the
cosmological constant term. The wiggly and solid lines represent gravitons and fermions, respectively.

where the pseudotensor T µν
LL(g) is defined via [11]

(−g)T µν
LL(g) =

2

κ2

(

1

8
gλσgµνgαγgβδ g

αγ ,σ g
βδ,λ −

1

4
gµλgνσgα,γgβδ g

αγ ,σ g
βδ,λ −

1

4
gλσgµνgβαgγδ g

αγ ,σ g
βδ,λ

+
1

2
gµλgνσgβαgγδ g

αγ ,σ g
βδ,λ +g

βαgλσ g
νσ,α g

µλ,β +
1

2
gµνgλσ g

λβ ,α g
ασ,β

− gµλgσβ g
νβ ,α g

σα,λ −gνλgσβ gµβ ,α g
σα,λ + g

λσ,σ g
µν ,λ − g

µλ,λ g
νσ,σ

)

, (8)

with g
µν =

√−g gµν and g
µν ,λ = ∂gµν/∂xλ.

From the full energy-momentum tensor T µν = T µν
m (g, ψ) + T µν

gr (g) we obtain the conserved full four-momentum of
the matter and the gravitational field as [11]

Pµ =

∫

(−g)T µνdSν , (9)

where the integration over any hypersurface containing the whole three-dimensional space is implied. Thus, by
demanding that the vacuum expectation value of the energy-momentum tensor times (−g) vanishes, we will obtain a
vanishing energy of the vacuum. The mentioned vacuum expectation value is given by the following path integral:

〈0|(−g)T µν|0〉 =

∫

DgDψ (−g)
[

T µν
gr (g) + T µν

m (g, ψ)
]

exp

{

i

∫

d4x
√−g [Lgr(g) + Lm(g, ψ) + LGF]

}

, (10)

where we have added the gauge fixing term

LGF = ξ

(

∂νh
µν − 1

2
∂µhνν

)(

∂βhµβ − 1

2
∂µh

α
α

)

, (11)

with ξ the gauge parameter, and the Faddeev-Popov determinant is included in the measure of integration. The
condition of vanishing of the right-hand-side of Eq. (10) uniquely fixes all coefficients in the power series expansion
of the cosmological constant in terms of ~:

Λ =

∞
∑

i=0

~
iΛi . (12)

To perform perturbative calculations, we represent the metric and vielbein fields as sums of the Minkowskian back-
ground and the quantum fields [3, 14]

gµν = ηµν + κhµν ,

gµν = ηµν − κhµν + κ2hµλh
λν − κ3hµλh

λ
σh

σν + · · · ,

eaµ = δaµ +
κ

2
haµ − κ2

8
hµρh

aρ + · · · ,

eµa = δµa − κ

2
hµa +

3κ2

8
haρh

µρ + . . . . (13)

Applying standard quantum field theory techniques, we obtain the Feynman rules required for the calculations per-
formed here. These are specified in the appendix when fermion fields are involved (the other ones are given in the
appendix of our earlier paper [10]).
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FIG. 2: Diagrams contributing to the vacuum expectation value of the energy-momentum pseudotensor times (−g). The filled
circle corresponds to the cosmological constant term. The cross stands for the energy-momentum pseudotensor times (−g),
wiggly and solid lines represent gravitons and fermions, respectively.

An infinite number of diagrams contribute to the vacuum expectation value of the full energy-momentum pseu-
dotensor times (−g) at tree order, however, all of them vanish if we take Λ0 = 0 in Eq. (12) [10]. Notice that this also
removes the mass term from the graviton propagator, corresponding to a ghost degree of freedom, at tree order [5].
Next, to obtain the one-loop contributions to the vacuum expectation value of the full energy-momentum pseudoten-

sor times (−g), we calculated the corresponding Feynman diagrams shown in Fig. 2. By demanding that Λ1 cancels
this contribution we obtain (in the calculations of the loop diagrams below we applied dimensional regularization,
with d the dimension of the spacetime, and used the program FeynCalc [15, 16])

Λ1 =
2−dπ−d/2κ2µ4−dmdΓ

(

1− d
2

)

d
, (14)

with µ the scale of dimensional regularization and Γ is Euler’s Γ-function. It is a trivial consequence of the definition
of the energy-momentum tensor of the matter fields that the same value of Λ1 cancels the one-loop contribution to the
vacuum expectation value of the graviton field hµν , shown in Fig. 1, and consequently, the graviton self-energy at zero
momentum, i.e. graviton mass, as a result of a Ward identity [6]. The first non-trivial result is obtained by calculating
the two-loop diagrams contributing to the vacuum expectation value of the full energy-momentum pseudotensor times
(−g) shown in Fig. 2 and to the vacuum expectation value of the gravitational field shown in Fig. 1. The same value

Λ2 = −2−2d−7d3π1−dκ4µ8−2dm2d−2 csc
(

πd
2

)

Γ
(

− d
2

)

(d− 2)Γ
(

d
2

) (15)

cancels both quantities. Here, csc is the cosecans. To check the reliability of the obtained results we also calculated
the two-loop contributions to the graviton self-energy and checked that the same value of Λ2 ensures that the graviton
remains massless in agreement with the Ward identity [6] (we do not give the expressions of the Feynman rules needed
for the calculation of the graviton self-energy due to their huge size).

III. QCD CONTRIBUTION TO THE VACUUM ENERGY

In the framework of general relativity coupled to the Standard Model, the contribution to the cosmological constant
originating from the shift in the vacuum energy due to explicit breaking of chiral symmetry of QCD can be calculated
with great accuracy [12]. Consider the two-flavour QCD Lagrangian of massless up and down quarks with external
scalar and pseudoscalar currents s(x) and p(x), respectively,

L = −1

4
F a
µνF

aµν + i ψ̄γαD
αψ − ψ̄(s− i γ5p)ψ , (16)

where ψ = (ψu, ψd)
T is a doublet comprising the up and down quark fields. For simplicity, we only consider the

two-flavor case here, the extension to three flavors (adding the strange quark) is straightforward. The Lagrangian of
Eq. (16) is invariant under SU(2)L × SU(2)R chiral symmetry transformations

1

2
(1− γ5)ψ → L

1

2
(1− γ5)ψ ,

1

2
(1 + γ5)ψ → R

1

2
(1 + γ5)ψ , (s+ i p) → L (s+ i p)R† , (17)

with L and R elements of SU(2)L and SU(2)R, respectively. Massless QCD undergoes spontaneous symmetry
breaking with pions appearing as Goldstone bosons. The corresponding low-energy effective Lagrangian is given as
an expansion in chiral orders, also taking into account the anomaly of the singlet axial current [17]. The lowest order
effective Lagrangian has the form

L2 =
F 2
π

4
Tr(∂µU∂

µU †) +
F 2
π

4
Tr(χU † + Uχ†) , (18)
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where Tr denotes the trace in flavor (isospin) space and the matrix-valued field U is given in terms of the pion fields
πa (a = 1, 2, 3) as

U = exp

(

i τaπa

Fπ

)

, (19)

with τa the Pauli matrices and χ = 2B0(s + ip). Here B0 is a constant of dimension [mass] related to the vacuum
expectation value of the scalar quark condensate and Fπ is the pion decay constant (in the chiral limit). The
Lagrangian of Eq. (18) is invariant under chiral transformations

U → LUR† , (s+ i p) → L(s+ i p)R†. (20)

The effective field theory corresponding to QCD is obtained by substituting the external sources as follows

s =

[

mu 0
0 md

]

, p = 0 . (21)

As the quark masses explicitly break the chiral symmetry, the pions obtain a small mass to leading order in the chiral
expansion (much smaller than any other hadron mass)

M2
π = B0(mu +md) +O(m2

q) , (22)

where mq denotes any of the light quark masses. Further, the effective Lagrangian generates a tree-order contribution
to the vacuum energy [12]

Λm = −〈0|L2|0〉 = −F 2
πB0(mu +md) = −F 2

πM
2
π . (23)

There is no other term linear in the quark masses in the chiral effective Lagrangian which could compensate the
contribution of Eq. (23), e.g. a term like Tr(χ+ χ†) would contribute to the vacuum energy but it violates the chiral
symmetry.
It is argued in Ref. [12] that to cancel the contribution to the vacuum energy given in Eq. (23) one needs to adjust

numerically the cosmological constant term in the EFT of pions interacting with gravitation where it is one of the
parameters of the effective Lagrangian. Evaluating Eq. (23), one obtains that the chiral symmetry breaking term of
QCD gives a large contribution to the vacuum energy

Λm = 1.5× 108MeV4 = 0.63× 1043Λexp, (24)

where Λexp = 2.4× 10−47 GeV4 is the observed value of the cosmological constant [18]. It is stated in Ref. [12] that:
“Because of the large multiplier, if one holds all the other parameters of the Standard Model fixed, a change of the up
quark mass in its forty-first digit would produce a change in Λ outside the anthropically allowed range. ... because
the calculation is so well controlled, it illustrates the degree of fine-tuning required as well as the futility of thinking
that some feature of the Standard Model could lead to a vanishing contribution to Λ.” Below we critically examine
this statement.
It is straightforward to construct a low-energy EFT of pions including the interaction with the gravitational field.

The corresponding action has the form

S = Sgr(g) +

∫

d4x
√−g

[

−F 2
πM

2
π +

1

2
gµν∂µπ

a ∂νπ
a − 1

2
M2

ππ
aπa +O(π4)

]

. (25)

Following the logic of the previous section to cancel the tree order contribution of the pions to the vacuum energy
we need to take Λ0 = F 2

πM
2
π in the expansion of Eq. (12). This value of Λ0 exactly cancels also the graviton mass

generated by Eq. (25) at tree order. At one-loop order there are two diagrams, shown in Fig. 3, contributing to
the graviton self-energy generated by the effective Lagrangian of Eq. (25). By demanding that the order ~ term in
Eq. (12) exactly cancels the contribution of these two one-loop diagrams for p2 = 0 (p is the four-momentum of the
graviton) we obtain

Λ1 =
3κ2

(

2M2
π A0

(

M2
π

)

+M4
π

)

512π2
, (26)

where using dimensional regularization for the loop integral we have

A0(M
2) =

(2π)4−dµ4−d

i π2

∫

ddk

k2 −M2 + i0+
. (27)



6

FIG. 3: One-loop diagrams with pions contributing to the graviton self-energy. Wiggly and dashed lines represent gravitons
and pions, respectively.

Thus, in full agreement with the results of Ref. [6] to have a self-consistent EFT the cosmological constant as a
parameter of this theory has to be a fixed function of the light quark masses (or equivalently, of the pion mass).
This condition imposed on the cosmological constant requires that the cosmological constant term exactly cancels
contributions of matter fields to vacuum energy analytically, for any values of the masses and couplings. Such a
condition invalidates the considerations of Ref. [12] about the numerical fine tuning briefly recapitulated above.
However, chiral invariance of the low-energy effective Lagrangian of pions interacting with gravitation does not allow
a quark mass dependent cosmological constant term, see the discussion after Eq. (23).
Thus, on the one hand the consistency condition of the EFT of general relativity requires that the cosmological

constant term is a given fixed function of the light quark masses and on the other hand the chiral symmetry of QCD
does not allow such a term. The solution to this apparent problem is that the chiral symmetry of the QCD Lagrangian
with external sources is not an exact symmetry of the full theory including the gravity.
Let us have a closer look at the action of general relativity given by Eq. (1). According to Ref. [6] the cosmological

constant term has to be a fixed function of other parameters of the theory, i.e. Λ ≡ Λ(mu,md, g, e, . . .), where e
is the electromagnetic coupling and the ellipsis stands for other parameters of the effective theory. The Lagrangian
Lm(g, ψ) at leading order coincides with the Lagrangian of the Standard Model, i.e. QCD plus the electroweak theory,
taken in a non-flat metric field. To obtain the leading order Lagrangian of the strong interaction we “switch off” all
other interactions and drop interaction terms with negative mass dimensions (i.e. higher-order “non-renormalizable”
interactions). To “switch off” gravity we approximate the metric field gµν by the constant Minkowski metric and
for the electroweak interaction we put the corresponding couplings equal to zero. This leaves us with the following
Lagrangian (for two flavours of quarks)

L = −1

4
F a
µνF

aµν + ψ̄ (i γαD
α −M)ψ + L0(mu,md, g) , (28)

where we have denoted −4Λ(mu,md, g, 0, 0, · · ·)/κ2 by L0(mu,md, g). This term does not contradict to any physical

symmetries, however, it is not usually included in the QCD Lagrangian because it does not contribute in physical
quantities when gravity is not taken into account.
The Lagrangian of Eq. (28) leads to the following contribution to the vacuum energy [19]

Λm = 〈0|muψ̄uψu +mdψ̄dψd|0〉 − 〈0|L0(mu,md, g)|0〉 = −F 2
πM

2
π − L0(mu,md, g). (29)

By taking the yet unspecified constant term of the QCD Lagrangian as L0(mu,md, g) = −F 2
πM

2
π + O(M4

π) =
−F 2

πB0(mu + md) + O(m2
q) and substituting in Eq. (29) we obtain for the contribution to the vacuum energy

Λm = 0 + O(m2
q). By adjusting the terms of higher orders in light quark masses mq in L0(mu,md, g) we can

achieve that the QCD contribution to the vacuum energy Λm exactly vanishes for any values of the quark masses.
While cancelling the standard QCD contribution to the vacuum energy, the addition of the constant L0 term to the

Lagrangian does not affect the construction of the low-energy effective field theory which proceeds in exact analogy
to Ref. [17] by starting with the following Lagrangian with external sources

Lext = −1

4
F a
µνF

aµν + i ψ̄γαD
αψ + ψ̄γµ(vµ + aµγ5)ψ − ψ̄(s− i γ5p)ψ + L0(mu,md, g), (30)

where the external sources vµ(x), aµ(x), s(x) and p(x) are Hermitean, color neutral matrices in flavour space and
s(x) = M+ · · · incorporates the quark mass term. Greens functions of scalar, pseudo-scalar, vector and axial vector
currents are generated by the vacuum-to-vacuum transition amplitude

〈0out|0in〉v,a,s,p = eiZ[v,a,s,p] =

∫

DADq ei
∫
d4xLext(x)

∫

DADq ei
∫
d4xL(x)

. (31)
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The generating functional Z[v, a, s, p] clearly does not depend on L0 and therefore the construction of the low-energy
EFT, namely chiral perturbation theory, is exactly the same as in Ref. [17] exploiting the fact that the Lagrangian
Lext without the L0 term is invariant under local transformations

ψ(x) →
[

1

2
(1 + γ5)R(x) +

1

2
(1 − γ5)L(x)

]

ψ(x) (32)

provided that the external sources transform as follows,

v′µ + a′µ = R(vµ + aµ)R
† + iR∂µR

†,

v′µ − a′µ = L(vµ − aµ)L
† + iL∂µL

†,

s′ + ip′ = R(s+ ip)L. (33)

We conclude that the presence in the QCD Lagrangian of the L0(mu,md, g) term, which is nothing else then a
cosmological constant, does not contradict to any physically relevant symmetries of QCD.

IV. SUMMARY

By demanding the presence of a massless graviton (instead of a massive spin-two ghost) in the spectrum of the
perturbative EFT of general relativity in flat Minkowski background the cosmological constant term is uniquely fixed
as a function of all other parameters of the theory [6]. We argue that if there is any physical reason for choosing a
fixed value of the cosmological constant then it must be the condition of vanishing of the vacuum energy. In our recent
paper [10] we calculated the vacuum expectation value of the full four-momentum of the matter and gravitational
fields at two-loop order in a simplified version of the Abelian model with spontaneous symmetry breaking considered
also in Ref. [6]. We obtained that as a result of a non-trivial cancellation between different diagrams the requirement
of the vanishing vacuum energy leads to the conditions of Ref. [6]. While in Ref. [10] we included only a scalar and
vectors as the matter fields, in the current work we considered the contributions of fermions and obtained similar
results. In particular, the value of the cosmological constant which cancels the two-loop fermion contribution to
the vacuum energy also eliminates the vacuum expectation value of the graviton field and the massive ghost, thus
leading to a self-consistent EFT of general relativity in Minkowski background. Being aware of the non-existence of a
commonly accepted expression of the energy-momentum tensor for the gravitational field (see, e.g., Refs. [20–24]), we
used the definition of the energy-momentum pseudotensor and the full four-momentum given in the classic textbook
by Landau and Lifshitz [11].
While we are still unable to give a general argument, based on our two-loop order results in an EFT of matter

and gravitational fields on flat Minkowski background we expect that by demanding that the vacuum energy should
be vanishing to all orders we obtain a self-consistent perturbative EFT of gravitation coupled to the fields of the
Standard Model.
The results of Refs. [6, 10] and of the current work resolve the issue of the fine-tuning of the QCD contribution in

the vacuum energy addressed in Ref. [12]. In particular, there is no numerical fine-tuning but rather the cosmological
constant, as a function of the parameters of QCD, exactly cancels the QCD contribution to the vacuum energy. How-
ever, this solution of the problem seems to be incompatible with the chiral symmetry of QCD. A closer examination,
however, reveals that there is no contradiction with any symmetries of QCD with observable physical consequences.
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Appendix A: Feynman rules

Below we give Feynman rules involving fermions used in the calculation of the vacuum expectation values of the
graviton field and the energy-momentum tensor multiplied with (−g). The other Feynman rules are given in the
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appendix of Ref. [10].

Propagators:

a) Fermion propagator with momentum p:

i

/p−m+ iǫ
. (A1)

Vertices (all momenta in all vertices are incoming):

a) Graviton with indices (µ, ν) - incoming fermion with incoming momentum p1 and outgoing fermion with incoming
momentum p2:

−1

8
iκ [2gµν (2m− γ · p1 + γ · p2) + γµ (p1

ν − p2
ν) + γν (p1

µ − p2
µ)] ; (A2)

b) Gravitons with (Lorentz indices, momentum) combinations (µ, ν, k1) and (α, β, k2) - incoming fermion with
incoming momentum p1 and outgoing fermion with incoming momentum p2:

iκ2

256

{

2γβ.γµ.γνk1
α + 2γβ.γν .γµk1

α − 2γµ.γν .γβk1
α − 2γν .γµ.γβk1

α + 2γα.γµ.γνk1
β + 2γα.γν .γµk1

β

−2γµ.γν .γαk1
β − 2γν.γµ.γαk1

β − 2γα.γβ .γνk2
µ − 2γβ.γα.γνk2

µ + 2γν .γα.γβk2
µ + 2γν.γβ .γαk2

µ

−2γα.γβ.γµk2
ν − 2γβ.γα.γµk2

ν + 2γµ.γα.γβk2
ν + 2γµ.γβ.γαk2

ν + 4γµ.γν . (γ · k1) gαβ + 4γν .γµ. (γ · k1) gαβ
−4 (γ · k1) .γµ.γνgαβ − 4 (γ · k1) .γν .γµgαβ − 3γβ.γν . (γ · k1) gαµ − γβ.γν . (γ · k2) gαµ − γν .γβ . (γ · k1) gαµ
−3γν.γβ. (γ · k2) gαµ + (γ · k1) .γβ.γνgαµ + 3 (γ · k1) .γν .γβgαµ + 3 (γ · k2) .γβ .γνgαµ + (γ · k2) .γν .γβgαµ
−3γβ.γµ. (γ · k1) gαν − γβ .γµ. (γ · k2) gαν − γµ.γβ. (γ · k1) gαν − 3γµ.γβ. (γ · k2) gαν + (γ · k1) .γβ .γµgαν
+3 (γ · k1) .γµ.γβgαν + 3 (γ · k2) .γβ.γµgαν + (γ · k2) .γµ.γβgαν − 3γα.γν . (γ · k1) gβµ − γα.γν . (γ · k2) gβµ
−γν.γα. (γ · k1) gβµ − 3γν.γα. (γ · k2) gβµ + (γ · k1) .γα.γνgβµ + 3 (γ · k1) .γν .γαgβµ + 3 (γ · k2) .γα.γνgβµ
+(γ · k2) .γν .γαgβµ − 3γα.γµ. (γ · k1) gβν − γα.γµ. (γ · k2) gβν − γµ.γα. (γ · k1) gβν − 3γµ.γα. (γ · k2) gβν
+(γ · k1) .γα.γµgβν + 3 (γ · k1) .γµ.γαgβν + 3 (γ · k2) .γα.γµgβν + (γ · k2) .γµ.γαgβν + 4γα.γβ . (γ · k2) gµν
+4γβ.γα. (γ · k2) gµν − 4 (γ · k2) .γα.γβgµν − 4 (γ · k2) .γβ.γαgµν + 4

(

−4p1
νγµgαβ + 4p2

νγµgαβ

−4p1
µγνgαβ + 4p2

µγνgαβ − 16mgµνgαβ + 8γ · p1gµνgαβ − 8γ · p2gµνgαβ + 3p1
βγνgαµ − 3p2

βγνgαµ

+3p1
βγµgαν − 3p2

βγµgαν + (3 (p1
ν − p2

ν) γα + 3 (p1
α − p2

α) γν + 8 (2m− γ · p1 + γ · p2) gαν) gβµ
+3p1

µγαgβν − 3p2
µγαgβν + 3p1

αγµgβν − 3p2
αγµgβν + 16mgαµgβν − 8γ · p1gαµgβν + 8γ · p2gαµgβν

−4p1
βγαgµν + 4p2

βγαgµν + γβ (3p1
νgαµ − 3p2

νgαµ + 3p1
µgαν − 3p2

µgαν − 4p1
αgµν + 4p2

αgµν)
)}

; (A3)

c) Energy-momentum tensor with indices (µ, ν) - incoming fermion with incoming momentum p1 and outgoing
fermion with incoming momentum p2:

1

2
(γµp1

ν + γνp1
µ) ; (A4)

d) Energy-momentum tensor with indices (µ, ν) - graviton with (Lorentz indices, momentum) combination (α, β, k1)
- incoming fermion with incoming momentum p1 and outgoing fermion with incoming momentum p2:

1

32
κ
{

−γβ. (γ · k1) .γνgαµ − γν .γβ. (γ · k1) gαµ + γν. (γ · k1) .γβgαµ + (γ · k1) .γβ .γνgαµ − γβ . (γ · k1) .γµgαν

−γµ.γβ. (γ · k1) gαν + γµ. (γ · k1) .γβgαν + (γ · k1) .γβ.γµgαν − γα. (γ · k1) .γνgβµ − γν .γα. (γ · k1) gβµ
+γν . (γ · k1) .γαgβµ + (γ · k1) .γα.γνgβµ − γα. (γ · k1) .γµgβν − γµ.γα. (γ · k1) gβν + γµ. (γ · k1) .γαgβν
+(γ · k1) .γα.γµgβν − 2

(

γβgανp1
µ + γαgβνp1

µ − γβgανp2
µ − γαgβνp2

µ + 2γν
(

p1
αgβµ − p2

αgβµ + gαµp1
β

−gαµp2β − 2gαβp1
µ + 2gαβp2

µ
)

+ γβgαµp1
ν + γαgβµp1

ν − γβgαµp2
ν − γαgβµp2

ν

+2γµ
(

p1
αgβν − p2

αgβν + gανp1
β − gανp2

β − 2gαβp1
ν + 2gαβp2

ν
))}

; (A5)
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The two-loop master integral appearing in the results of various two-loop calculations is :

∫

ddk1d
dk2

(2π)2d
1

(k21 −M2 + iǫ)α(k22 −M2 + iǫ)β((k1 − k2)2 + iǫ)γ
=

i2−2α−2β−2γM2(d−α−β−γ)Γ
(

d
2 − γ

)

Γ
(

α+ γ − d
2

)

Γ
(

β + γ − d
2

)

Γ(α+ β + γ − d)

(4π)dΓ(α)Γ(β)Γ
(

d
2

)

Γ(α + β + 2γ − d)
. (A6)
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