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Recently, in the framework of a two-loop order calculation for an effective field theory of scalar and

vector fields interacting with the metric field, we have shown that for the cosmological constant term which

is fixed by the condition of vanishing vacuum energy the graviton remains massless and there exists a self-

consistent effective field theory of general relativity defined on a flat Minkowski background. In the current

paper, we extend the two-loop analysis for an effective field theory of fermions interacting with the

gravitational field and obtain an analogous result. We also address the issues of fine-tuning of the strong

interaction contribution to the vacuum energy and the compatibility of chiral symmetry in the light quark

sector with the consistency of the effective field theory of general relativity in a flat Minkovski background.
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I. INTRODUCTION

It is widely accepted that at low energies the physics of

the fundamental particles can be adequately described by

effective field theories (EFTs), with the Standard Model

being its leading-order approximation [1]. Gravitation can

also be included in this framework by considering the

effective Lagrangian of metric fields interacting with matter

fields [2,3]. Within this approach, the metric field is

represented as the Minkowski background plus the graviton

field, and the cosmological constant is usually set equal to

zero; see, e.g., Ref. [4]. For a nonvanishing cosmological

constant term Λ, the graviton propagator has a pole

corresponding to a massive ghost mode [5]. As the

cosmological constant term is not suppressed by any

symmetry of the effective theory, setting it to zero does

not solve the problem because the radiative corrections

regenerate the massive ghost [6]. It has been shown in

Ref. [6] that one can represent the cosmological constant as

a power series in ℏ and adjust the coefficients of this series

such that the unphysical mass of the graviton is canceled to

all orders in the loop expansion. Thus, to take into account

a cosmological constant term other than obtained in

Ref. [6], it is necessary to consider an EFT in a curved

background field. As shown in Ref. [7] by imposing the

equations of motion with respect to the nontrivial back-

ground graviton field, the mass term of the graviton is

removed at tree level. A systematic study of the issue by

including the quantum corrections requires an EFT on a

curved background metric, which, to the best of our

knowledge, is not available yet.

The accelerating expansion of the Universe (see, e.g.,

Ref. [8] and references therein) leaves us with a huge

discrepancy between the measured small value of the

effective cosmological constant and its theoretical estima-

tion [9]. In our opinion, if there exists any condition that

uniquely fixes the value of the cosmological constant, then

it is most natural to expect that it must be imposed by

demanding that the energy of the physical vacuum state of

the theory describing the Universe is exactly zero. In our

recent work [10], we calculated two-loop order contribu-

tions of a scalar and vector fields to the vacuum expectation

value of the full 4-momentum in a simplified version of the

Abelian model with spontaneous symmetry breaking,

considered also in Ref. [6]. We found that as a result of

a nontrivial cancellation between different diagrams the

requirement of vanishing vacuum energy leads to consis-

tency conditions of the considered EFT, first obtained in

Ref. [6]. In the current work, we extend this two-loop

analysis and calculate the contributions from fermions.
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For the energy-momentum tensor of the gravitational field,

we use the definition of the energy-momentum pseudo-

tensor and the full 4-momentum given in the classic

textbook by Landau and Lifshitz [11].

Further, in light of the above discussion, we readdress the

issue of the fine-tuning of the strong interaction contribu-

tion to the vacuum energy and compatibility of the results

of Ref. [6] with the chiral symmetry of QCD.

Our work is organized as follows. In Sec. II, we specify

the details of the considered EFT of fermions interacting

with a gravitational field and calculate one- and two-loop

contributions to the vacuum energy and the vacuum

expectation value of the gravitational field. In Sec. III,

we discuss the QCD contribution to vacuum energy and the

problem of the fine-tuning following Ref. [12]. We sum-

marize in Sec. IV, and the Appendix contains the Feynman

rules involving fermion fields and two-loop integrals

required in our calculations.

II. VACUUM ENERGY IN AN EFT OF FERMIONS

INTERACTING WITH GRAVITONS ON

A MINKOWSKI BACKGROUND

Effective field theory of matter interacting with gravity is

described by the most general effective Lagrangian of

gravitational and matter fields, which is invariant under

general coordinate transformations and the other under-

lying symmetries,

S ¼
Z

d4x
ffiffiffiffiffiffi

−g
p fLgrðgÞ þ Lmðg;ψÞg

¼
Z

d4x
ffiffiffiffiffiffi

−g
p �

2

κ2
ðR − 2ΛÞ þ Lgr;hoðgÞ þ Lmðg;ψÞ

�

¼ SgrðgÞ þ Smðg;ψÞ; ð1Þ

where κ2 ¼ 32πG, with Newton’s constant G ¼
6.70881 × 10−39 GeV−2; ψ and gμν denote the matter

and metric fields, respectively; g ¼ det gμν; Λ is the

cosmological constant; and R denotes the scalar curvature.

Further, Lmðg;ψÞ is the effective Lagrangian of the matter

fields interacting with gravity. Experimental evidence

suggests that self-interaction terms of the gravitational

field with higher orders of derivatives, represented by

Lgr;hoðgÞ, as well as the nonrenormalizable interactions

of Lmðg;ψÞ give contributions to physical quantities which

are heavily suppressed for energies accessible by current

accelerators. Vielbein tetrad fields have to be introduced for

an EFT with fermions.

To be specific, consider the action of the fermions

interacting with the gravitational field given by

Sm ¼
Z

d4x
ffiffiffiffiffiffi

−g
p �

1

2
ψ̄ie

μ
aγ

a∇μψ −

1

2
∇μψ̄ie

μ
aγ

aψ −mψ̄ψ

�

þ LHO; ð2Þ

where LHO denotes the interactions of higher order, the

specific form of which is not important for the current work

as we will not include them in our calculations. The

covariant derivative acting on the fermion field has the form

∇μψ ¼ ∂μψ − ωab
μ σabψ ;

∇μψ̄ ¼ ∂μψ̄ þ ψ̄σabω
ab
μ ; ð3Þ

where σab ¼ 1

4
½γa; γb� and

ωab
μ ¼ −gνλeaλð∂μe

b
ν − ebσΓ

σ
μνÞ;

Γ
λ
αβ ¼

1

2
gλσð∂αgβσ þ ∂βgασ − ∂σgαβÞ: ð4Þ

The vielbein fields satisfy the following relations:

eaμe
b
νηab ¼ gμν; e

μ
ae

ν
bη

ab ¼ gμν;

eaμe
b
νg

μν ¼ gab; e
μ
ae

ν
bgμν ¼ gab: ð5Þ

The energy-momentum tensor corresponding to Eq. (2) has

the form [13]

T
μν
m ¼ i

4
ðψ̄eaμγa∇νψ þ ψ̄eaνγ

a∇μψ −∇μψ̄eaνγ
aψ

−∇νψ̄eaμγ
aψÞ þ T

μν
HO; ð6Þ

where T
μν
HO corresponds to LHO. Note that we consider one

fermion field with mass m, the extension to more fermion

fields with equal or different masses is straightforward.

For the gravitational field, we have

T
μν
gr ðgÞ ¼

4

κ2
Λgμν þ T

μν
LLðgÞ; ð7Þ

where the pseudotensor T
μν
LLðgÞ is defined via [11]

ð−gÞTμν
LLðgÞ ¼

2

κ2

�

1

8
gλσgμνgαγgβδg

αγ;σ g
βδ;λ −

1

4
gμλgνσgα;γgβδg

αγ;σ g
βδ;λ −

1

4
gλσgμνgβαgγδg

αγ;σ g
βδ;λ

þ 1

2
gμλgνσgβαgγδg

αγ;σ g
βδ;λþgβαgλσg

νσ;α g
μλ;β þ

1

2
gμνgλσg

λβ;α g
ασ;β

− gμλgσβg
νβ;α g

σα;λ −g
νλgσβg

μβ;α g
σα;λ þg

λσ;σ g
μν;λ −g

μλ;λ g
νσ;σ

�

; ð8Þ

with g
μν ¼ ffiffiffiffiffiffi

−g
p

gμν and g
μν;λ ¼ ∂gμν=∂xλ.
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From the full energy-momentum tensor Tμν¼
T
μν
m ðg;ψÞþT

μν
gr ðgÞ,weobtain the conserved full 4-momentum

of the matter and the gravitational field as [11]

Pμ ¼
Z

ð−gÞTμνdSν; ð9Þ

where the integration over any hypersurface containing

the whole three-dimensional space is implied. Thus, by

demanding that the vacuum expectation value of the

energy-momentum tensor times (−g) vanishes, wewill obtain
a vanishing energy of the vacuum. The mentioned vacuum

expectation value is given by the path integral

h0jð−gÞTμνj0i

¼
Z

DgDψð−gÞ½Tμν
gr ðgÞ þ T

μν
m ðg;ψÞ�

× exp

�

i

Z

d4x
ffiffiffiffiffiffi

−g
p ½LgrðgÞ þ Lmðg;ψÞ þ LGF�

�

;

ð10Þ

where we have added the gauge-fixing term

LGF ¼ ξ

�

∂νh
μν
−

1

2
∂μhνν

��

∂βhμβ −
1

2
∂μh

α
α

�

; ð11Þ

with ξ the gauge parameter, and the Faddeev-Popov deter-

minant is included in themeasure of integration. The condition

of vanishing of the right-hand side of Eq. (10) uniquely fixes

all coefficients in the power series expansion of the cosmo-

logical constant in terms of ℏ:

Λ ¼
X

∞

i¼0

ℏ
i
Λi: ð12Þ

To perform perturbative calculations, we represent the metric

and vielbein fields as sums of the Minkowskian background

and the quantum fields [3,14]

gμν ¼ ημν þ κhμν;

gμν ¼ ημν − κhμν þ κ2h
μ
λh

λν
− κ3h

μ
λh

λ
σh

σν þ � � � ;

eaμ ¼ δaμ þ
κ

2
haμ −

κ2

8
hμρh

aρ þ � � � ;

e
μ
a ¼ δ

μ
a −

κ

2
h
μ
a þ

3κ2

8
haρh

μρ þ…: ð13Þ

Applying standard quantum field theory techniques,weobtain

the Feynman rules required for the calculations performed

here. These are specified in the Appendix when fermion fields

are involved (the other ones are given in the Appendix of our

earlier paper [10]).

An infinite number of diagrams contribute to the vacuum

expectation value of the full energy-momentum pseudoten-

sor times (−g) at tree order; however, all of them vanish if we

take Λ0 ¼ 0 in Eq. (12) [10]. Notice that this also removes

the mass term from the graviton propagator, corresponding

to a ghost degree of freedom, at tree order [5].

Next, to obtain the one-loop contributions to the vacuum

expectation value of the full energy-momentum pseudo-

tensor times (−g), we calculated the corresponding

Feynman diagrams shown in Fig. 2. By demanding that

Λ1 cancels this contribution, we obtain (in the calculations

of the loop diagrams below, we applied dimensional

regularization, with d the dimension of the space-time,

and used the program FEYNCALC [15,16])

Λ1 ¼
2−dπ−d=2κ2μ4−dmd

Γð1 − d
2
Þ

d
; ð14Þ

with μ the scale of dimensional regularization and Γ being

Euler’s Γ function. It is a trivial consequence of the

definition of the energy-momentum tensor of the matter

fields that the same value of Λ1 cancels the one-loop

contribution to the vacuum expectation value of the

graviton field hμν, shown in Fig. 1, and, consequently,

the graviton self-energy at zero momentum, i.e., graviton

mass, as a result of a Ward identity [6]. The first nontrivial

result is obtained by calculating the two-loop diagrams

contributing to the vacuum expectation value of the full

energy-momentum pseudotensor times (−g) shown in

Fig. 2 and to the vacuum expectation value of the

gravitational field shown in Fig. 1. The same value

Λ2 ¼ −

2−2d−7d3π1−dκ4μ8−2dm2d−2 cscðπd
2
ÞΓð− d

2
Þ

ðd − 2ÞΓðd
2
Þ ð15Þ

cancels both quantities. Here, csc is the cosecans. To check

the reliability of the obtained results, we also calculated the

two-loop contributions to the graviton self-energy and

checked that the same value of Λ2 ensures that the graviton

remains massless in agreement with the Ward identity [6]

(we do not give the expressions of the Feynman rules

FIG. 1. Diagrams contributing to the vacuum expectation value of the graviton field. The filled circle corresponds to the cosmological

constant term. The wiggly and solid lines represent gravitons and fermions, respectively.
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needed for the calculation of the graviton self-energy due to

their huge size).

III. QCD CONTRIBUTION TO THE

VACUUM ENERGY

In the framework of general relativity coupled to the

Standard Model, the contribution to the cosmological

constant originating from the shift in the vacuum energy

due to explicit breaking of chiral symmetry of QCD can be

calculated with great accuracy [12]. Consider the two-

flavor QCD Lagrangian of massless up and down quarks

with external scalar and pseudoscalar currents sðxÞ and

pðxÞ, respectively,

L ¼ −

1

4
Fa
μνF

aμν þ iψ̄γαD
αψ − ψ̄ðs − iγ5pÞψ ; ð16Þ

where ψ ¼ ðψu;ψdÞT is a doublet comprising the up and

down quark fields. For simplicity, we only consider the

two-flavor case here; the extension to three flavors (adding

the strange quark) is straightforward. The Lagrangian of

Eq. (16) is invariant under SUð2ÞL × SUð2ÞR chiral sym-

metry transformations

1

2
ð1 − γ5Þψ → L

1

2
ð1 − γ5Þψ ;

1

2
ð1þ γ5Þψ → R

1

2
ð1þ γ5Þψ ;

ðsþ ipÞ → Lðsþ ipÞR†; ð17Þ

with L and R elements of SUð2ÞL and SUð2ÞR, respec-
tively. Massless QCD undergoes spontaneous symmetry

breaking with pions appearing as Goldstone bosons. The

corresponding low-energy effective Lagrangian is given as

an expansion in chiral orders, also taking into account the

anomaly of the singlet axial current [17]. The lowest-order

effective Lagrangian has the form

L2 ¼
F2
π

4
Trð∂μU∂μU†Þ þ F2

π

4
Trð χU† þ U χ†Þ; ð18Þ

where Tr denotes the trace in the flavor (isospin) space and

the matrix-valued fieldU is given in terms of the pion fields

πa (a ¼ 1, 2, 3) as

U ¼ exp

�

iτaπa

Fπ

�

; ð19Þ

with τa the Pauli matrices and χ ¼ 2B0ðsþ ipÞ. Here, B0

is a constant of dimension mass related to the vacuum

expectation value of the scalar quark condensate, and Fπ is

the pion decay constant (in the chiral limit). The

Lagrangian of Eq. (18) is invariant under chiral trans-

formations

U → LUR†; ðsþ ipÞ → Lðsþ ipÞR†: ð20Þ

The effective field theory corresponding to QCD is

obtained by substituting the external sources as follows:

s ¼
�

mu 0

0 md

�

; p ¼ 0: ð21Þ

As the quark masses explicitly break the chiral symmetry,

the pions obtain a small mass to leading order in the chiral

expansion (much smaller than any other hadron mass)

M2
π ¼ B0ðmu þmdÞ þOðm2

qÞ; ð22Þ

where mq denotes any of the light quark masses. Further,

the effective Lagrangian generates a tree-order contribution

to the vacuum energy [12]

Λm ¼ −h0jL2j0i ¼ −F2
πB0ðmu þmdÞ ¼ −F2

πM
2
π: ð23Þ

There is no other term linear in the quark masses in the

chiral effective Lagrangian which could compensate the

contribution of Eq. (23); e.g., a term like Trð χ þ χ†Þwould
contribute to the vacuum energy, but it violates the chiral

symmetry.

It is argued in Ref. [12] that to cancel the contribution to

the vacuum energy given in Eq. (23) one needs to adjust

numerically the cosmological constant term in the EFT of

pions interacting with gravitation where it is one of the

parameters of the effective Lagrangian. Evaluating

Eq. (23), one obtains that the chiral symmetry breaking

term of QCD gives a large contribution to the vacuum

energy

Λm ¼ 1.5 × 108 MeV4 ¼ 0.63 × 1043Λexp; ð24Þ

FIG. 2. Diagrams contributing to the vacuum expectation value of the energy-momentum pseudotensor times (−g). The filled circle

corresponds to the cosmological constant term. The cross stands for the energy-momentum pseudotensor times (−g), and wiggly and

solid lines represent gravitons and fermions, respectively.
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where Λexp ¼ 2.4 × 10−47 GeV4 is the observed value of

the cosmological constant [18]. Reference [12] states,

“Because of the large multiplier, if one holds all the other

parameters of the Standard Model fixed, a change of the up

quark mass in its forty-first digit would produce a change in

Λ outside the anthropically allowed range. … Because the

calculation is so well controlled, it illustrates the degree of

fine-tuning required as well as the futility of thinking that

some feature of the Standard Model could lead to a

vanishing contribution to Λ.” Below, we critically examine

this statement.

It is straightforward to construct a low-energy EFT of

pions including the interaction with the gravitational field.

The corresponding action has the form

S ¼ SgrðgÞ þ
Z

d4x
ffiffiffiffiffiffi

−g
p �

−F2
πM

2
π þ

1

2
gμν∂μπ

a∂νπ
a

−

1

2
M2

ππ
aπa þOðπ4Þ

�

: ð25Þ

Following the logic of the previous section to cancel the

tree-order contribution of the pions to the vacuum energy,

we need to take Λ0 ¼ F2
πM

2
π in the expansion of Eq. (12).

This value of Λ0 exactly cancels also the graviton mass

generated by Eq. (25) at tree order. At one-loop order, there

are two diagrams, shown in Fig. 3, contributing to the

graviton self-energy generated by the effective Lagrangian

of Eq. (25). By demanding that the order ℏ term in Eq. (12)

exactly cancels the contribution of these two one-loop

diagrams for p2 ¼ 0 (p is the 4-momentum of the grav-

iton), we obtain

Λ1 ¼
3κ2ð2M2

πA0ðM2
πÞ þM4

πÞ
512π2

; ð26Þ

where using dimensional regularization for the loop inte-

gral we have

A0ðM2Þ ¼ ð2πÞ4−dμ4−d
iπ2

Z

ddk

k2 −M2 þ i0þ
: ð27Þ

Thus, in full agreement with the results of Ref. [6] to

have a self-consistent EFT, the cosmological constant

as a parameter of this theory has to be a fixed function

of the light quark masses (or equivalently, of the pion

mass). This condition imposed on the cosmological con-

stant requires that the cosmological constant term exactly

cancels contributions of matter fields to vacuum energy

analytically, for any values of the masses and couplings.

Such a condition invalidates the considerations of Ref. [12]

about the numerical fine-tuning briefly recapitulated above.

However, chiral invariance of the low-energy effective

Lagrangian of pions interacting with gravitation does not

allow a quark-mass-dependent cosmological constant term;

see the discussion after Eq. (23).

Thus, on the one hand, the consistency condition of the

EFT of general relativity requires that the cosmological

constant term is a given fixed function of the light quark

masses, and on the other hand, the chiral symmetry of QCD

does not allow such a term. The solution to this apparent

problem is that the chiral symmetry of the QCD Lagrangian

with external sources is not an exact symmetry of the full

theory including the gravity.

Let us have a closer look at the action of general relativity

given by Eq. (1). According to Ref. [6], the cosmological

constant termhas to be a fixed function of other parameters of

the theory, i.e., Λ≡ Λðmu; md; g; e;…Þ, where e is the

electromagnetic coupling and the ellipsis stands for other

parameters of the effective theory. The LagrangianLmðg;ψÞ
at leading order coincides with the Lagrangian of the

Standard Model, i.e., QCD plus the electroweak theory,

taken in a nonflat metric field. To obtain the leading-order

Lagrangian of the strong interaction,we “switch off” all other

interactions and drop interaction terms with negative mass

dimensions (i.e., higher-order “nonrenormalizable” inter-

actions). To switch off gravity, we approximate the metric

field gμν by the constant Minkowski metric, and for the

electroweak interaction, we put the corresponding couplings

equal to zero. This leaves us with the Lagrangian (for two

flavors of quarks)

L¼−

1

4
Fa
μνF

aμνþ ψ̄ðiγαDα
−MÞψþL0ðmu;md;gÞ; ð28Þ

where we have denoted −4Λðmu; md; g; 0; 0;…Þ=κ2 by

L0ðmu; md; gÞ. This term does not contradict to any physical

symmetries; however, it is not usually included in the QCD

Lagrangian because it does not contribute in physical

quantities when gravity is not taken into account.

The Lagrangian of Eq. (28) leads to the following

contribution to the vacuum energy [19]:

Λm ¼ h0jmuψ̄uψu þmdψ̄dψdj0i − h0jL0ðmu; md; gÞj0i
¼ −F2

πM
2
π − L0ðmu; md; gÞ: ð29Þ

By taking the yet unspecified constant term of the

QCD Lagrangian as L0ðmu; md; gÞ ¼ −F2
πM

2
π þOðM4

πÞ ¼
−F2

πB0ðmu þmdÞ þOðm2
qÞ and substituting in Eq. (29),

we obtain for the contribution to the vacuum energy

Λm ¼ 0þOðm2
qÞ. By adjusting the terms of higher orders

FIG. 3. One-loop diagrams with pions contributing to the

graviton self-energy. Wiggly and dashed lines represent gravitons

and pions, respectively.
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in light quark masses mq in L0ðmu; md; gÞ, we can achieve

that the QCD contribution to the vacuum energyΛm exactly

vanishes for any values of the quark masses.

While canceling the standard QCD contribution to the

vacuum energy, the addition of the constant L0 term to the

Lagrangian does not affect the construction of the low-

energy effective field theory, which proceeds in exact

analogy to Ref. [17] by starting with the Lagrangian with

external sources

Lext ¼ −

1

4
Fa
μνF

aμν þ iψ̄γαD
αψ þ ψ̄γμðvμ þ aμγ5Þψ

− ψ̄ðs − iγ5pÞψ þ L0ðmu; md; gÞ; ð30Þ

where the external sources vμðxÞ, aμðxÞ, sðxÞ, and pðxÞ
are Hermitian, color neutral matrices in flavor space and

sðxÞ ¼ Mþ � � � incorporates the quark mass term. Greens

functions of scalar, pseudoscalar, vector, and axial vector

currents are generated by the vacuum-to-vacuum transition

amplitude

h0outj0iniv;a;s;p ¼ eiZ½v;a;s;p� ¼
R

DADqe
i
R

d4xLextðxÞ

R

DADqe
i
R

d4xLðxÞ
: ð31Þ

The generating functional Z½v; a; s; p� clearly does not

depend on L0, and therefore the construction of the low-

energy EFT, namely, chiral perturbation theory, is exactly

the same as in Ref. [17], exploiting the fact that the

Lagrangian Lext without the L0 term is invariant under

local transformations

ψðxÞ →
�

1

2
ð1þ γ5ÞRðxÞ þ

1

2
ð1 − γ5ÞLðxÞ

�

ψðxÞ; ð32Þ

provided that the external sources transform as follows:

v0μ þ a0μ ¼ Rðvμ þ aμÞR† þ iR∂μR
†;

v0μ − a0μ ¼ Lðvμ − aμÞL† þ iL∂μL
†;

s0 þ ip0 ¼ Rðsþ ipÞL: ð33Þ

We conclude that the presence in the QCD Lagrangian of

the L0ðmu; md; gÞ term, which is nothing other then a

cosmological constant, does not contradict to any physi-

cally relevant symmetries of QCD. We remark, again, that

these considerations have been performed in Minkowski

space-time; a generalization to a curved background has yet

to be worked out.

IV. SUMMARY

By demanding the presence of a massless graviton

(instead of a massive spin-2 ghost) in the spectrum of the

perturbative EFT of general relativity in flat Minkowski

background, the cosmological constant term is uniquely

fixed as a function of all other parameters of the theory [6].

We argue that if there is any physical reason for choosing a

fixed value of the cosmological constant then it must be the

condition of vanishing of the vacuum energy. In our recent

paper [10], we calculated the vacuum expectation value of

the full 4-momentum of the matter and gravitational fields at

two-loop order in a simplified version of the Abelian model

with spontaneous symmetry breaking considered also in

Ref. [6]. We obtained that as a result of a nontrivial

cancellation between different diagrams the requirement

of the vanishing vacuum energy leads to the conditions of

Ref. [6]. While in Ref. [10] we included only a scalar and

vectors as the matter fields, in the current work, we

considered the contributions of fermions and obtained

similar results. In particular, the value of the cosmological

constant, which cancels the two-loop fermion contribution

to the vacuum energy, also eliminates the vacuum expect-

ation value of the graviton field and the massive ghost, thus

leading to a self-consistent EFT of general relativity in

Minkowski background. Being aware of the nonexistence of

a commonly accepted expression of the energy-momentum

tensor for the gravitational field (see, e.g., Refs. [20–24]), we

used the definition of the energy-momentum pseudotensor

and the full 4-momentum given in the classic textbook by

Landau and Lifshitz [11].

While we are still unable to give a general argument,

based on our two-loop order results in an EFTof matter and

gravitational fields on flat Minkowski background, we

expect that by demanding that the vacuum energy should

be vanishing to all orders we obtain a self-consistent

perturbative EFT of gravitation coupled to the fields of

the Standard Model.

Let us emphasize that for any value of the cosmological

constant other than obtained in Ref. [6] it is necessary to

consider an EFT in a curved background field. While in this

case the mass term of the graviton is removed at tree level

[7], a systematic study of the issue by including the

quantum corrections, to the best of our knowledge, has

not been done due to the lack of corresponding EFT in

curved background.

The results of Refs. [6,10] and of the current work

resolve the issue of the fine-tuning of the QCD contribution

in the vacuum energy addressed in Ref. [12]. In particular,

there is no numerical fine-tuning, but rather the cosmo-

logical constant, as a function of the parameters of QCD,

exactly cancels the QCD contribution to the vacuum

energy. However, this solution of the problem seems to

be incompatible with the chiral symmetry of QCD. A closer

examination, however, reveals that there is no contradiction

with any symmetries of QCD with observable physical

consequences. Stated differently, it is possible to cancel the

QCD contribution to the cosmological constant for any

value of the quark masses in a way that does not invalidate

the successful use of chiral perturbation theory at low

energies. The precise mechanism of this cancellation in

J. GEGELIA and ULF-G. MEIßNER PHYS. REV. D 100, 124002 (2019)

124002-6



terms of more fundamental theory underlying the EFT of

general relativity coupled to the Standard Model remains to

be understood.
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APPENDIX: FEYNMAN RULES

Below, we give Feynman rules involving fermions used

in the calculation of the vacuum expectation values of the

graviton field and the energy-momentum tensor multiplied

with (−g). The other Feynman rules are given in the

Appendix of Ref. [10].

Propagators:

(1) Fermion propagator with momentum p:

i

=p −mþ iϵ
: ðA1Þ

Vertices (all momenta in all vertices are incoming):

(i) Graviton with indices ðμ; νÞ—incoming fermion with

incoming momentum p1 and outgoing fermion with

incoming momentum p2:

−

1

8
iκ½2gμνð2m − γ · p1 þ γ · p2Þ þ γμðp1

ν
− p2

νÞ

þ γνðp1
μ
− p2

μÞ�: ðA2Þ

(ii) Gravitons with (Lorentz indices, momentum) combi-

nations ðμ; ν; k1Þ and ðα; β; k2Þ—incoming fermion

with incoming momentum p1 and outgoing fermion

with incoming momentum p2:

iκ2

256
f2γβ:γμ:γνk1α þ 2γβ:γν:γμk1

α
− 2γμ:γν:γβk1

α
− 2γν:γμ:γβk1

α þ 2γα:γμ:γνk1
β þ 2γα:γν:γμk1

β

− 2γμ:γν:γαk1
β
− 2γν:γμ:γαk1

β
− 2γα:γβ:γνk2

μ
− 2γβ:γα:γνk2

μ þ 2γν:γα:γβk2
μ þ 2γν:γβ:γαk2

μ

− 2γα:γβ:γμk2
ν
− 2γβ:γα:γμk2

ν þ 2γμ:γα:γβk2
ν þ 2γμ:γβ:γαk2

ν þ 4γμ:γν:ðγ · k1Þgαβ þ 4γν:γμ:ðγ · k1Þgαβ

− 4ðγ · k1Þ:γμ:γνgαβ − 4ðγ · k1Þ:γν:γμgαβ − 3γβ:γν:ðγ · k1Þgαμ − γβ:γν:ðγ · k2Þgαμ − γν:γβ:ðγ · k1Þgαμ

− 3γν:γβ:ðγ · k2Þgαμ þ ðγ · k1Þ:γβ:γνgαμ þ 3ðγ · k1Þ:γν:γβgαμ þ 3ðγ · k2Þ:γβ:γνgαμ þ ðγ · k2Þ:γν:γβgαμ

− 3γβ:γμ:ðγ · k1Þgαν − γβ:γμ:ðγ · k2Þgαν − γμ:γβ:ðγ · k1Þgαν − 3γμ:γβ:ðγ · k2Þgαν þ ðγ · k1Þ:γβ:γμgαν

þ 3ðγ · k1Þ:γμ:γβgαν þ 3ðγ · k2Þ:γβ:γμgαν þ ðγ · k2Þ:γμ:γβgαν − 3γα:γν:ðγ · k1Þgβμ − γα:γν:ðγ · k2Þgβμ

− γν:γα:ðγ · k1Þgβμ − 3γν:γα:ðγ · k2Þgβμ þ ðγ · k1Þ:γα:γνgβμ þ 3ðγ · k1Þ:γν:γαgβμ þ 3ðγ · k2Þ:γα:γνgβμ

þ ðγ · k2Þ:γν:γαgβμ − 3γα:γμ:ðγ · k1Þgβν − γα:γμ:ðγ · k2Þgβν − γμ:γα:ðγ · k1Þgβν − 3γμ:γα:ðγ · k2Þgβν

þ ðγ · k1Þ:γα:γμgβν þ 3ðγ · k1Þ:γμ:γαgβν þ 3ðγ · k2Þ:γα:γμgβν þ ðγ · k2Þ:γμ:γαgβν þ 4γα:γβ:ðγ · k2Þgμν

þ 4γβ:γα:ðγ · k2Þgμν − 4ðγ · k2Þ:γα:γβgμν − 4ðγ · k2Þ:γβ:γαgμν þ 4ð−4p1
νγμgαβ þ 4p2

νγμgαβ

− 4p1
μγνgαβ þ 4p2

μγνgαβ − 16mgμνgαβ þ 8γ · p1g
μνgαβ − 8γ · p2g

μνgαβ þ 3p1
βγνgαμ − 3p2

βγνgαμ

þ 3p1
βγμgαν − 3p2

βγμgαν þ ð3ðp1
ν
− p2

νÞγα þ 3ðp1
α
− p2

αÞγν þ 8ð2m − γ · p1 þ γ · p2ÞgανÞgβμ

þ 3p1
μγαgβν − 3p2

μγαgβν þ 3p1
αγμgβν − 3p2

αγμgβν þ 16mgαμgβν − 8γ · p1g
αμgβν þ 8γ · p2g

αμgβν

− 4p1
βγαgμν þ 4p2

βγαgμν þ γβð3p1
νgαμ − 3p2

νgαμ þ 3p1
μgαν − 3p2

μgαν − 4p1
αgμν þ 4p2

αgμνÞÞg: ðA3Þ

(iii) Energy-momentum tensor with indices ðμ; νÞ—
incoming fermion with incoming momentum p1 and

outgoing fermion with incoming momentum p2:

1

2
ðγμp1

ν þ γνp1
μÞ: ðA4Þ

(iv) Energy-momentum tensor with indices ðμ; νÞ—
graviton with (Lorentz indices, momentum) combina-

tion ðα; β; k1Þ—incoming fermion with incoming

momentum p1 and outgoing fermion with incoming

momentum p2:
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1

32
κf−γβ:ðγ · k1Þ:γνgαμ − γν:γβ:ðγ · k1Þgαμ þ γν:ðγ · k1Þ:γβgαμ þ ðγ · k1Þ:γβ:γνgαμ − γβ:ðγ · k1Þ:γμgαν

− γμ:γβ:ðγ · k1Þgαν þ γμ:ðγ · k1Þ:γβgαν þ ðγ · k1Þ:γβ:γμgαν − γα:ðγ · k1Þ:γνgβμ − γν:γα:ðγ · k1Þgβμ

þ γν:ðγ · k1Þ:γαgβμ þ ðγ · k1Þ:γα:γνgβμ − γα:ðγ · k1Þ:γμgβν − γμ:γα:ðγ · k1Þgβν þ γμ:ðγ · k1Þ:γαgβν

þ ðγ · k1Þ:γα:γμgβν − 2ðγβgανp1
μ þ γαgβνp1

μ
− γβgανp2

μ
− γαgβνp2

μ þ 2γνðp1
αgβμ − p2

αgβμ þ gαμp1
β

− gαμp2
β
− 2gαβp1

μ þ 2gαβp2
μÞ þ γβgαμp1

ν þ γαgβμp1
ν
− γβgαμp2

ν
− γαgβμp2

ν

þ 2γμðp1
αgβν − p2

αgβν þ gανp1
β
− gανp2

β
− 2gαβp1

ν þ 2gαβp2
νÞÞg: ðA5Þ

The two-loop master integral appearing in the results of various two-loop calculations is

Z

ddk1d
dk2

ð2πÞ2d
1

ðk2
1
−M2 þ iϵÞαðk2

2
−M2 þ iϵÞβððk1 − k2Þ2 þ iϵÞγ

¼ i2−2α−2β−2γM2ðd−α−β−γÞ
Γðd

2
− γÞΓðαþ γ − d

2
ÞΓðβ þ γ − d

2
ÞΓðαþ β þ γ − dÞ

ð4πÞdΓðαÞΓðβÞΓðd
2
ÞΓðαþ β þ 2γ − dÞ : ðA6Þ
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