001     874048
005     20210406193218.0
024 7 _ |a 10.1002/aelm.201901134
|2 doi
024 7 _ |a 2128/24698
|2 Handle
024 7 _ |a altmetric:76016744
|2 altmetric
024 7 _ |a WOS:000512960000001
|2 WOS
037 _ _ |a FZJ-2020-01203
082 _ _ |a 621.3
100 1 _ |a Guan, Xiangxiang
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Unconventional Ferroelectric Switching via Local Domain Wall Motion in Multiferroic ε‐Fe2O3 Films
260 _ _ |a Chichester
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617696698_24456
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Deterministic polarization reversal in ferroelectric and multiferroic films is critical for their exploitation in nanoelectronic devices. While ferroelectricity has been studied for nearly a century, major discrepancies in the reported values of coercive fields and saturation polarization persist in literature for many materials. This raises questions about the atomic‐scale mechanisms behind polarization reversal. Unconventional ferroelectric switching in ε‐Fe2O3 films, a material that combines ferrimagnetism and ferroelectricity at room temperature, is reported. High‐resolution in situ scanning transmission electron microscopy experiments and first‐principles calculations demonstrate that polarization reversal in ε‐Fe2O3 occurs around pre‐existing domain walls only, triggering local domain wall motion in moderate electric fields of 250–500 kV cm−1. Calculations indicate that the activation barrier for switching at domain walls is nearly a quarter of that corresponding to the most likely transition paths inside ε‐Fe2O3 domains. Moreover, domain walls provide symmetry lowering of the polar structure near the domain boundary, which is shown to be necessary for ferroelectric switching in ε‐Fe2O3. Local polarization reversal in ε‐Fe2O3 limits the macroscopic ferroelectric response and offers important hints on how to tailor ferroelectric properties by domain structure design in other relevant ferroelectric materials.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
536 _ _ |a Ab initio study of novel multiferroic materials (jiff38_20190501)
|0 G:(DE-Juel1)jiff38_20190501
|c jiff38_20190501
|f Ab initio study of novel multiferroic materials
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yao, Lide
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Rushchanskii, Konstantin
|0 P:(DE-Juel1)130926
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Inkinen, Sampo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yu, Richeng
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Lezaic, Marjana
|0 P:(DE-Juel1)130799
|b 5
|u fzj
700 1 _ |a Sánchez, Florencio
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gich, Martí
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Dijken, Sebastiaan
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1002/aelm.201901134
|g p. 1901134 -
|0 PERI:(DE-600)2810904-1
|n 4
|p 1901134
|t Advanced electronic materials
|v 6
|y 2020
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/874048/files/aelm.201901134.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/874048/files/aelm.201901134.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:874048
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130799
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21