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We present a systematic derivation of effective lattice spin Hamiltonians derived from a rotation-
ally invariant multi-orbital Hubbard model including a term ensuring Hund’s rule coupling. The
Hamiltonians are derived down-folding the fermionic degrees of freedom of the Hubbard model into
the proper low-energy spin sector using Löwdin partitioning, which will be outlined in detail for
the case of two sites and two orbitals at each site. Correcting the ground state systematically up
to fourth order in the hopping of electrons, we find, for spin S ≥ 1, a biquadratic, three-spin and
four-spin interactions beyond the conventional Heisenberg term. Comparing the puzzling energy
spectrum of the magnetic states for a single Fe monolayer on Ru(0001), obtained from density func-
tional theory, with the spin Hamiltonians taken at the limit of classical spins, we show that the
previously ignored three-spin interaction can be comparable in size to the conventional Heisenberg
exchange.

I. INTRODUCTION

Magnetic interactions have captivated several gener-
ations of condensed matter physicists because of their
diversity of physical origins in very different solids, the
emergence of a vast spectrum of magnetic structures
as a result of their competition and subsequently the
many interesting physical phenomena that are arising
from those magnetic structures [1–3]. Antiferromagnets
with noncoplanar spin textures and topological magne-
tization solitons such as skyrmions are current examples
of complex magnetic structures with a broad spectrum
of exotic properties that are of interest for both basic re-
search and applications in spintronics [4]. Understanding
the properties of these novel spin textures has revitalized
the field of magnetic interactions. In this context, itin-
erant magnets play an important role as the itinerant
electrons give rise to these complex magnetic structures
and in turn the complex magnetic structures give rise to
interesting transport phenomena [5–7].

In a materials specific context, the theoretical descrip-
tions of magnetic ground states as well as the dynami-
cal or thermodynamical properties of magnetic systems
are often made possible by a realistic spin Hamiltonian
typically determined by a multi-scale approach: density
functional theory (DFT) calculations are mapped onto a
classical lattice spin Hamiltonian, i.e., a lattice of clas-
sical spins interacting according to spin models, whose
properties are then evaluated carrying out Monte Carlo
or spin-dynamic simulations [8–16]. That is to say that
the materials specificity enters through the parameters
of the model determined by DFT. The choice of the spin
model itself reflects the choice of materials and the inter-
actions that seem relevant to understand certain proper-
ties.

For many bulk as well as application-customized mul-
tilayer and heterostructure systems, the well known

∗ m.hoffmann@fz-juelich.de

spin S = 1/2-Heisenberg model [17] of quantum spins
S is extrapolated to systems with higher quantum spin,
S > 1/2, and very often to classical vector spins S pro-
viding a parametrization of an effective spin Hamiltonian
successful in describing the required magnetic properties.
This holds also true for metallic magnetic materials, in
particular those for which the longitudinal spin fluctu-
ations are unimportant as compared to the transversal
ones. These are typically magnets of transition metals
with atomic spin moments in the order of 2 µB and more
such as for Mn, Fe, Co in their bulk phases, as alloys and
multilayers commonly used in spintronic devices.

In fact, describing typical properties of those magnetic
metals one resorts to the classical Heisenberg model of
bilinear exchange interactions of the form

H1 = −
∑′

ij

Jij Si · Sj (1)

between pairs of classical spins S at different lattice
sites i, j with exchange interactions Jij whose signs and
strengths depend on details of the electronic structure.
The spatial dependence of the exchange interaction fol-
lows typically the crystal anisotropy imposed by the crys-
tal lattice. For metals the Jij can be long-ranged and in
part determined by the topology of the Fermi surface,
in opposite to insulators, where they are typically short-
ranged. A success of this approach is for example the
prediction of magnetic structures consistent to experi-
ments [18] or the Curie temperatures of bulk ferromag-
nets [19, 20]. The minus sign in (1) is just a convention
we follow for all spin lattice Hamiltonians throughout the
paper. The notation

∑′
means here and throughout the

paper that we are taking the sum over all possible integer
sites i and j except for any summations of two equal sites
i = j.

There are, however, well-known cases where the
Heisenberg model is insufficient to describe correctly the
magnetic ground-state structure or magnon excitations.
In these cases [21] one addresses the higher-order spin in-
teraction beyond the Heisenberg model. A typical signa-
ture of the higher-order spin interaction is the occurrence
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of particular types of non-collinear states, e.g. canted
magnetic states [22] or multi-q states, a superposition
of spin-spiral states of symmetry related wave vectors q.
A spin-spiral state with a single q-vector [22, 23] is an
exact solution of the classical Heisenberg model for a pe-
riodic lattice. The higher-order terms couple modes of
symmetry equivalent q vectors and can lead to complex
magnetic structures of energies lower than the single-q
state [24].

One of the most commonly considered extensions of
the bilinear Heisenberg form is the addition of the bi-
quadratic exchange, a term of the form

H2 = −
∑′

ij

Bij(Si · Sj)2 . (2)

This term has been motivated by very different mi-
croscopic origins, through superexchange [1], magneto-
elastic effect [25, 26] or interlayer exchange coupling [27].
Quite generally, according to the algebra of the spin op-
erators, any power of scalar products of pairs of quan-
tum spins of total spin S at sites i, j, can only have 2S
independent powers up to (Si · Sj)2S . Thus, for the bi-
quadratic term to occur through the interaction of elec-
trons requires at least a total spin S = 1 at the lattice
sites. As we will see below, as the power of (Si · Sj)
is related to the order of perturbation theory, the bi-
quadratic term [28–36] is the most essential correction
to the Heisenberg model for spins S > 1/2 involving two
lattice sites.

Involving more lattice sites, a systematic extension
of the bilinear Heisenberg form is the four-spin inter-
action, which was derived by Takahashi [37] for a spin
1/2-system treating electrons by a single band Hubbard
model. It arises in fourth-order perturbation theory of
electron hopping versus Coulomb interaction [38]. The
four-spin interaction consists of four-body operators that
appear by permuting all spins in a four-membered ring
and can be written in the limit of classical spin as

H4 = −
∑′

ijkl

Kijkl [(Si · Sj)(Sk · Sl) + (Si · Sl)(Sj · Sk)

−(Si · Sk)(Sj · Sl)] , (3)

with the sum over all rings of four sites.
Although the higher-order spin models where mostly

applied to magnets with localized electrons such as mag-
netic insulators [39, 40], comparing DFT results for itin-
erant metallic magnets with spin-models reveals their sig-
nificance also for these systems. Examples include con-
tributions of the biquadratic term to the spin-stiffness
of the bulk magnets Fe, Co and Ni [41], the coni-
cal spin spirals for a double-layer Mn on W(110) [42],
or even three-dimensional non-collinear spin structures
on a two-dimensional lattice as in Mn/Cu(111) [24],
Fe/Ir(100) [10] or Fe/Ir(111) [43]. In case of the latter,
the four-spin interaction couples spin spirals with differ-
ent propagation directions and forms a square lattice of
chiral magnetic skyrmions of atomic scale size.

However, one became recently aware not all systems
studied with DFT could be explained purely on the
basis of the higher-order interactions discussed above.
Two such examples are the theoretically predicted [44]
and recently experimentally verified [45] so-called up-up-
down-down (uudd) state, a multi-q state, in Fe/Rh(111)
or a canted uudd state in a RhFe bilayer system on
Ir(111) [46]. While an uudd state could in general be
stabilized by both considered higher-order interactions
independently, the calculated energy spectrum revealed
that the main stabilization has to originate from another,
hitherto unknown, interaction.

Summarizing the spin-models discussed so far we can
view the Heisenberg, biquadratic and four-spin model
as a two-spin-two-site, four-spin-two-site, and four-spin-
four-site interaction, respectively. Heisenberg and four-
spin interaction emerge for S = 1/2, the biquadratic one
requires at least S = 1. Since typical magnetic Mn, Fe,
Co moments at surfaces are in the order of 2 or 3 µB

equivalent to S = 1 or S = 3/2, there should be a large
number of quasi two-dimensional non-Heisenberg mag-
nets, in particular for substrates for which the effective
Heisenberg exchange is small due to compensation of Jij
of different signs between different neighbors.

Further, using this notion of classification, a four-
spin-three-site interaction seems missing. Indeed, vari-
ous partly phenomenological models of three-spin inter-
actions [47] had been proposed or derived to explain ex-
periments mostly for insulating magnets [30, 48–53].

In this paper we provide a consistent and system-
atic derivation of expressions describing the beyond-
Heisenberg higher-order spin interactions resulting from
the electron-electron interaction up to the fourth order
in the hopping interaction strength of electrons for total
spins of size S ≥ 1/2. This includes all possible sequences
of four hopping events of electrons between orbitals at
maximal four sites. The spin-orbit interaction and the
crystal field effects are neglected at this point. The
starting point is the rotationally invariant multi-orbital
Hubbard model assuming half-filling, which will be ex-
plained in the next section. The spin-model is derived
down-folding the dynamical fermionic degrees of freedom
of electrons described by the Hubbard model into the
proper low-energy spin sector using Löwdin partition-
ing [54, 55], which is also known as Schrieffer-Wolf trans-
formation [56, 57]. The Löwdin partitioning is briefly
sketched for a dimer of S = 1-spins described by two
electron orbitals at both sites. Then, we will present
our results for different numbers of sites and orbitals and
also for lattices with different space groups like a square
lattice as for example for magnetic atoms on a (001)-
surface of a fcc crystal, or on a hexagonal lattice like
the (111)-surface to adapt the theoretical approach to
real systems. Taking the classical spin-limit of the quan-
tum spin-models derived, we reproduce the known spin
Hamiltonians above plus the missing three-spin interac-
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tion

H3 = −2
∑′

ijk

Yijk(Si · Sj)(Sj · Sk) , (4)

where the sum goes over triangles of sites.
At the end, we will analyze the energy spectrum for

various magnetic structures determined by density func-
tional theory for a single Fe monolayer on Ru(0001).
Subsequently we will show that the hitherto puzzling re-
sults [44] can finally be understood.

II. METHODOLOGY

A. Multi-band Hubbard model

In this section we briefly introduce the Hamiltonian,
from which we start our derivations, and define the most
important parameters of our model. In the following sec-
tion we will then focus on reducing the inherent degrees
of freedom of the Hamiltonian to the spin degrees of free-
dom in order to derive effective spin models. This Hamil-
tonian will then be used to generate spin Hamiltonians
for different systems that vary by the number of sites and
orbitals and also by the lattice type. Exemplary Maple
scripts which were used to perform the derivations pre-
sented throughout the paper can be found online [58].

Earlier similar investigations [37, 38] typically used the
one-band Hubbard model [59–61] as a starting point since
it is the simplest model for describing interacting elec-
trons on a lattice. For practical magnetic systems, which
we have in mind with typical magnetic spin moments on
the order of 2 or 3 µB (S = 1 or S = 3/2), we extend our
investigation to systems with more than one orbital per
site (e.g. d-orbitals of transition metals). Therefore, we
work with a generalized Hubbard Hamiltonian, which not
only includes the additional hopping terms and Coulomb
interactions, but contains also additional terms to ensure
Hund’s rule coupling. The Hund’s terms are included as
we are interested in states with a fixed and stable mag-
netic moment S per atom or site:

H =−
∑

i<j,α,σ

ti,α,j,α

(
c†i,α,σcj,α,σ + h.c.

)
−

∑
i<j,σ
α6=α′

t′i,α,j,α′ (c†i,α,σcj,α′,σ + h.c.)

+
∑
i,α

Ui,α n̂i,α,↑n̂i,α,↓

+
∑
i,σ
α<α′

U ′i,α,α′ (n̂i,α,σn̂i,α′,σ + n̂i,α,σn̂i,α′,σ̄)

−
∑
i,σ
α<α′

Ji,α,α′ n̂i,α,σn̂i,α′,σ

−
∑
i,α<α′

Ji,α,α′
(
c†i,α,↑ci,α,↓c

†
i,α′,↓ci,α′,↑ + h.c.

)

−
∑
i,α<α′

J ′i,α,α′
(
c†i,α,↑ci,α′,↑c

†
i,α,↓ci,α′,↓ + h.c.

)
.

(5)

Here, the first (second) term represents the inter-site elec-
tron hopping between the same (different) orbital type,
while the third (fourth) term describes the Coulomb in-
teraction of two electrons located at the same site occu-
pying the same (different) orbital. The remaining terms
in Eq. (5) describe the Hund’s coupling as well as pair-
hopping processes. i and j represent the atomic sites, α
and α′ stand for the orbitals and σ denotes the quan-
tization of the spin projection of the electron (↑ or ↓).
n̂i,α,σ = c†i,α,σci,α,σ defines the number of electrons at

site i in orbital α with spin σ. t (t′) describes the hop-
ping amplitude between two different sites of the same
(different [62]) orbital types. The on-site hopping be-
tween different orbitals is not considered as we assume
the orbitals to be orthogonal with respect to each other
(t′i,α,i,α′ = 0). Fig. 1 shows a schematic visualization of
the Hubbard as well as the effective spin model.

Only on-site Coulomb interactions are taken into ac-
count throughout the paper. Having a periodic solid
in mind with only one atom type, we assume that the
intra-orbital Coulomb interaction between electrons of
the same orbitals α is the same for each site, Ui,α = U ,
as well as the inter-orbital Coulomb interaction between
electrons in different orbitals, U ′i,α,α′ = U ′. Analogously,

Ji,α,α′ = JH and J ′i,α,α′ = J ′H simplifies due to the ab-
sence of the site dependency.

B. Löwdin partitioning

Here we briefly explain how Löwdin partitioning [54,
55] is used to derive an effective spin Hamiltonian. As an
example, we take the smallest interacting system with
more than one orbital per site, two sites with two or-
bitals each. Assuming half-filled orbitals, we deal with
four electrons, that could be distributed among the four
available orbitals. Thus, an orbital, |s 〉, can be occu-
pied with s equal to one or two electrons or it can be
unoccupied, denoted as | · 〉. The possible states sorted
according to the angular momentum quantum number
m, representing the z-component of the total spin of the
system include the following product states:

m = 2 : |↑, ↑, ↑, ↑〉
m = 1 : |↑, ↑, ↑, ↓〉 , |↑, ↑, ↓, ↑〉 , |↑, ↓, ↑, ↑〉 , |↓, ↑, ↑, ↑〉 ,

|↑↓, ↑, ↑, ·〉 , |↑, ↑↓, ↑, ·〉 , |↑, ↑, ↑↓, ·〉 , |↑↓, ↑, ·, ↑〉 ,
|↑, ↑↓, ·, ↑〉 , |↑, ↑, ·, ↑↓〉 , |↑↓, ·, ↑, ↑〉 , |↑, ·, ↑↓, ↑〉 ,
|↑, ·, ↑, ↑↓〉 , |·, ↑↓, ↑, ↑〉 , |·, ↑, ↑↓, ↑〉 , |·, ↑, ↑, ↑↓〉
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FIG. 1. Schematic representation of the two investigated models. (a) The multi-band Hubbard model. A periodic arrangement
of atoms on a lattice is shown. The different orbitals (here two) are illustrated by gray planes located at each atom. Each
orbital can host up to two electrons, one spin-up (shown in red) and one spin-down (blue). Additionally, the hopping paths
are indicated by green arrows and sites with non zero on-site energies (proportional to U , U ′ and JH) are highlighted by green
spheres. (b) The extended Heisenberg model in the limit of classical spins (gray arrows) at each lattice site. Direct exchange
(Si ·Sj) is illustrated by colored arrows. Higher-order interactions couple two of them to form 4-spin interactions involving two
(B), three (Y) or four (K) sites as indicated by the springs.

m = 0 : |↑, ↑, ↓, ↓〉 , |↑, ↓, ↑, ↓〉 , |↑, ↓, ↓, ↑〉 , |↓, ↑, ↑, ↓〉 ,
|↓, ↑, ↓, ↑〉 , |↓, ↓, ↑, ↑〉 , |↑↓, ↑, ↓, ·〉 , |↑↓, ↑, ·, ↓〉 ,
|↑, ↑↓, ↓, ·〉 , |↑, ↑↓, ·, ↓〉 , |↑↓, ↓, ↑, ·〉 , |↑↓, ·, ↑, ↓〉 ,
|↑, ↓, ↑↓, ·〉 , |↑, ·, ↑↓, ↓〉 , |↑↓, ↓, ·, ↑〉 , |↑↓, ·, ↓, ↑〉 ,
|↑, ↓, ·, ↑↓〉 , |↑, ·, ↓, ↑↓〉 , |↓, ↑↓, ↑, ·〉 , |↓, ↑, ↑↓, ·〉 ,
|·, ↑↓, ↑, ↓〉 , |·, ↑, ↑↓, ↓〉 , |↓, ↑↓, ·, ↑〉 , |↓, ↑, ·, ↑↓〉 ,
|·, ↑↓, ↓, ↑〉 , |·, ↑, ↓, ↑↓〉 , |↓, ·, ↑↓, ↑〉 , |↓, ·, ↑, ↑↓〉 ,
|·, ↓, ↑↓, ↑〉 , |·, ↓, ↑, ↑↓〉 , |↑↓, ↑↓, ·, ·〉 , |↑↓, ·, ↑↓, ·〉 ,
|↑↓, ·, ·, ↑↓〉 , |·, ↑↓, ↑↓, ·〉 , |·, ↑↓, ·, ↑↓〉 , |·, ·, ↑↓, ↑↓〉

m = −1 : |↑, ↓, ↓, ↓〉 , |↓, ↑, ↓, ↓〉 , |↓, ↓, ↑, ↓〉 , |↓, ↓, ↓, ↑〉 ,
|↑↓, ↓, ↓, ·〉 , |↑↓, ↓, ·, ↓〉 , |↑↓, ·, ↓, ↓〉 , |↓, ↑↓, ↓, ·〉 ,
|↓, ↑↓, ·, ↓〉 , |·, ↑↓, ↓, ↓〉 , |↓, ↓, ↑↓, ·〉 , |↓, ·, ↑↓, ↓〉 ,
|·, ↓, ↑↓, ↓〉 , |↓, ↓, ·, ↑↓〉 , |↓, ·, ↓, ↑↓〉 , |·, ↓, ↓, ↑↓〉

m = −2 : |↓, ↓, ↓, ↓〉 (6)

Here, |s1, s2, s3, s4〉 = |s1〉 |s2〉 |s3〉 |s4〉 means that at site
1 the first (second) orbital is occupied by s1 (s2) and at
site 2 the first (second) orbital is occupied by s3 (s4).
In general, for a system with n orbitals, the number of

states for each value of m is given by
(

n
n/2+m

)2
.

Since the z-component of the angular momentum vec-
tor operator Sz commutes with the Hamiltonian (5), the
Hamiltonian block-diagonalizes in separate subspaces of
different m, and the matrix representation of (5) can be
calculated for each subspace separately. To support our
goal of contracting Hamiltonian (5) of our model to an
effective spin Hamiltonian, it is convenient to change the
product basis |s1, s2, s3, s4〉 to one where the total spin
at any site is a good quantum number. For example, for
m = 1 the first 4 states are replaced by the following

superpositions:

1√
2

(|↑, ↑, ↑, ↓〉+ |↑, ↑, ↓, ↑〉) = |1, 1〉 |1, 0〉

1√
2

(|↑, ↓, ↑, ↑〉+ |↓, ↑, ↑, ↑〉) = |1, 0〉 |1, 1〉

1√
2

(|↑, ↑, ↑, ↓〉 − |↑, ↑, ↓, ↑〉) = |1, 1〉 |0, 0〉

1√
2

(|↑, ↓, ↑, ↑〉 − |↓, ↑, ↑, ↑〉) = |0, 0〉 |1, 1〉 ,

(7)

where we used the notation |S1,m1〉 |S2,m2〉 with Si be-
ing the spin quantum number and mi being the total
z-component at site i.

We are essentially interested in the subspace spanned
by the first two states of (7) as we assume magnetic
systems, which have constant magnetic moments (here,
S = 1) at each site. Although there is no direct inter-
action between these two states, there are indirect inter-
actions across states where S is not equal at all sites.
These indirect interactions between intermediate states
in different subspaces can be downfolded into the sec-
tor of interacting spins of constant quantum number at
each site using the so-called Löwdin partitioning [54, 55].
Löwdin partitioning can be used because we are dealing
with energetically well separated subspaces of spins with
different S. This is a consequence of Hund coupling and
on-site Coulomb energies that are large with respect to
the hopping parameters, as we are discussing transition
metals here.

The Löwdin partitioning is a tool to decouple these
subspaces perturbatively and to map the indirect inter-
action between two states of the same subspace over
states of the other subspaces to direct interactions be-
tween these states with increasing order of the perturba-
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tion. For example, the indirect interaction |↑, ↑, ↓, ↓〉 ∼t←→
|↑, ·, ↓, ↑↓〉 ∼t←→ |↑, ↓, ↓, ↑〉 is mapped on a direct interac-

tion |↑, ↑, ↓, ↓〉 ∼t
2/U←−−−→ |↑, ↓, ↓, ↑〉 if terms up to at least

second order are taken into account in the Löwdin par-
titioning. By going to higher orders also indirect inter-
actions including more than two hopping events are con-
sidered. These can then relate to interactions with more
than two sites.

Mathematically, this is achieved by dividing the Hamil-
tonian H into two parts,

H = H0 +H′ = H0 +H1 +H2 , (8)

a termH0 that contains the on-site contributions, i.e. the
repulsive Coulomb interaction and the Hund exchange,
and a term H′, which contains the off-diagonal matrix
elements due to the electron hopping, which are treated
as a perturbation. Here, H1 contains those terms whose
matrix elements couple within the subspaces, whereasH2

describes the coupling between them. The subspaces are
decoupled through a canonical transformation [56, 57]

H̃ = e−ŜHeŜ , (9)

where hermiticity of the Hamiltonian implies Ŝ† = −Ŝ
and the generator Ŝ of the transformation is chosen such
that H̃ becomes block-diagonal. This is achieved writing
Eq. (9) in the form of successive applications of commu-
tator rules

H̃ =

∞∑
k=0

1

k!

[
H, Ŝ

]k
=

∞∑
k=0

1

k!

[
H0 +H1 +H2, Ŝ

]k
,

(10)
with [A , B ]k = [ [ . . . [ [A , B ] , B ] . . . , B ] , B ] nested
k times. Considering the definitions of H1 and H2 [55],
this allows then to decouple Eq. (10) into a Hamiltonian

term H̃d, whose matrix representation is block diagonal
and a term H̃o with off-block-diagonal matrix elements
as shown here:

H̃d =

∞∑
k=0

1

(2k)!

[
H0+H1, Ŝ

]2k
+

∞∑
k=0

1

(2k + 1)!

[
H2, Ŝ

]2k+1

H̃o =

∞∑
k=0

1

(2k + 1)!

[
H0+H1, Ŝ

]2k+1

+

∞∑
k=0

1

(2k)!

[
H2, Ŝ

]2k
(11)

The requirement of block diagonalization or H̃o = 0, re-
spectively, up to a given order k in the perturbation de-
termines the generator Ŝ and subsequently the effective
Hamiltonian H̃d. Due to the block-diagonalization of H
with respect to the basis of Sz, the Löwdin partitioning
can be carried out independently for each angular mo-
mentum quantum number m. We work out all spin mod-
els for either m = 0 or m ± 1/2, depending the systems
have integer or half-integer total spins, since these states
denote the largest subspaces, and the Löwdin partition-
ing becomes least degenerate and the functional forms of
the spin Hamiltonians become most obviously distinct.

III. RESULTS

A. Derived spin Hamiltonians

Recalling that the spin operators

Si = (Si,x,Si,y,Si,z) (12)

can be expressed by the electron operators ci,α,σ, c†i,α,σ
as

Si,x =
1

2

∑
α

(
c†i,α,↑ci,α,↓ + c†i,α,↓ci,α,↑

)
Si,y = − i

2

∑
α

(
c†i,α,↑ci,α,↓ − c

†
i,α,↓ci,α,↑

)
(13)

Si,z =
1

2

∑
α

(n̂i,α,↑ − n̂i,α,↓) ,

whereby the sum goes over all orbitals α at site i, we
show now how the electron Hamiltonian of a particu-
lar model system folded down in the proper spin sector
can be expressed by spin operators and thus represents
the corresponding spin Hamiltonian or spin model of the
system. In the following we present results up to fourth-
order perturbation in (11) which permits the investiga-
tion of interactions between 2, 3, and 4 sites. We start
with spin S = 1/2, i.e. exactly one orbital per site, and
then move to S ≥ 1.

1. Spin S=1/2

a. Two sites, spin S = 1/2. To demonstrate the
general procedure, we first discuss a S = 1/2 dimer, i.e.,
two sites and only one orbital per site. For m = 0,
the Hilbert space is spanned by four possible states
|↑, ↓〉 , |↓, ↑〉 , |↑↓, ·〉 , |·, ↑↓〉, from which the first two span
the subspace of interest with S = 1/2 at both sites. H0

gives the same on-site energies for both states, which we
consider the origin of our energy scale. Going up to sec-
ond order in the perturbation (the first order vanishes,
because there is no direct coupling between the states)
additional terms occur which couple the states. Those

terms are, e.g. proportional to c†2,↑c
†
1,↓c1,↑c2,↓+ h.c., rep-

resenting a hopping |↑, ↓〉 ↔ |↓, ↑〉. Collecting all those
terms and extending the derivation to an infinite lattice
of two-site interactions, the resulting Hamiltonian can be
written in terms of the spin operators (13) as

H2 sites
2ndorder =

4 t2

U

∑′

ij

c†i,↑ci,↓c
†
j,↓cj,↑ − n̂i,↑n̂j,↓

=
2 t2

U

∑′

ij

(
Si · Sj −

n̂in̂j
4

)
,

(14)

with n̂i = (n̂i,↑ + n̂i,↓) being the total number opera-
tor with expectation value ni for electrons at site i. As
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we only consider the low-energy subspace, charge exci-
tations are neglected, and only states with half-filled or-
bitals giving rise to maximal S are considered. Thus, the
last term in Eq. (14) defines a constant energy shift by
n1n2/4 = |S1| · |S2| = S2 [63]. Thus, by going just up to
second order in the perturbation of the hopping terms we
obtain the well-known Heisenberg term (1), if we define
the exchange parameter J as J = −2t2/U .

According to what has been said above, S = 1/2 mod-
els with pair-interaction involving electrons hopping be-
tween two sites can only exhibit a bilinear spin Hamilto-
nian. This is confirmed by the inclusion of fourth-order
terms in the perturbation (10) (the third order vanishes
again), which can be summarized to the following expres-
sion

H2 sites
4thorder = −8 t4

U3

∑′

ij

(
Si · Sj −

n̂in̂j
4

)
. (15)

No terms of additional spin-spin interactions show up in
fourth-order perturbation for two site-interactions. This
shows that indeed a system of pair interactions of spin-
1/2 sites can be described purely by the Heisenberg in-
teraction (1), although the fourth-order term provides a
correction of the Heisenberg exchange parameter

J = −2 t2

U
+

8t4

U3
. (16)

The negative sign of the leading term means that the
magnetic ground state of a spin-1/2 system is the m = 0
singlet state if t/U < 1/2, which we equate with the
antiferromagnetic state. If the system becomes more
metallic, the hopping matrix element t increases as well
as the number of sites involved. Then the prefactor of
the second term increases rapidly with system size (see
Tab. I) and the likelihood for ferromagnetic interactions
increases. Although discussed only for spin states with
m = 0, the same effective Hamiltonian is also able to
describe those with m = 1 and m = −1, respectively, as
the excitation energy of those states due to the hopping
of electrons is 0 both in the Hubbard Hamiltonian and
in the effective spin Hamiltonian.

b. Three sites, spin S = 1/2. Since the fourth-
order perturbation term in (11) involves four succes-
sive hopping events of electrons, the interaction can in-
volve spins or orbitals, respectively, beyond two sites up
to four sites and thus can go beyond the pair interac-
tion typical for the Heisenberg model. Considering three
sites, the perturbation theory results, however, again in
a pair interaction analogous to the Heisenberg model.
The only difference with respect to the system with two
sites is a change of the prefactor, i.e., of the Heisenberg
exchange parameter, respectively (cf. Tab. I, for sim-
plicity we assumed the same t for all hopping events.
The effect of different hopping elements tij will be an-
alyzed below). Again, this spin Hamiltonian is capa-
ble of describing all the subspaces for different m (here,
m = −3/2,−1/2,+1/2,+3/2).

TABLE I. Calculated prefactors of the Heisenberg exchange
and the four-spin interactions in terms of the model parame-
ters t and U of the Hubbard model (5) taken at single-orbital
per site for different numbers of sites with S = 1/2 obtained
by going up to 4th order in the Löwdin partitioning.

sites J K

2 − 2 t2

U
+ 8 t4

U3 0

3 − 2 t2

U
+ 6 t4

U3 0

4 − 2 t2

U
+ 10 t4

U3 − 10 t4

U3

5 − 2 t2

U
+ 20 t4

U3 − 10 t4

U3

6 − 2 t2

U
+ 36 t4

U3 − 10 t4

U3

8 − 2 t2

U
+ 86 t4

U3 − 10 t4

U3

c. Four sites, spin S = 1/2. For four sites, the
fourth-order perturbation produces terms, which can be
subsumed to the Heisenberg term, but generates also ad-

ditional ones, for example, c†4,↑c
†
3,↑c
†
2,↓c
†
1,↓c1,↑c2,↑c3,↓c4,↓+

h.c., for four sites with m = 0. In contrast to the terms
above, this term flips four spins instead of two.

If we collect all these terms of fourth order and express
them in terms of spin operators we obtain

H4 sites
4thorder =

10 t4

U3

∑′

ijkl

(
Si · Sj −

n̂in̂j
4

)(
Sk · Sl −

n̂kn̂l
4

)
,

(17)
which can be divided into a four-spin term

H4 sites
4 spins =

10 t4

U3

∑′

ijkl

(Si · Sj) (Sk · Sl) , (18)

plus a Heisenberg term with the prefactor J = 10 t4/U3,
and a constant energy shift of size 15 t4/U3. The prefac-
tor in Eq. (18) will be called −K in this paper.

Equation (18) is a simplified version of the more com-
plex four-spin interaction [8, 10, 43] introduced in (3),
namely for the case when the hopping parameters be-
tween all the atoms are the same. In a real system
this is rarely the case as the value of the hopping pa-
rameter t depends on the distances between the two in-
volved atoms, the types of orbitals, but also on the en-
vironment, for details see also Section: III B. Carrying
out a more explicit calculation of the fourth-order term
with pair-dependent hopping parameter tij , the prefactor
K ∝ −t4 in (17), (18) changes to ring paths of hopping
with Kijkl ∝ −tijtjktkltli and with spin terms as in (3).
d. N > 4 sites, spin S = 1/2. Going up to more

sites (e.g., 5, 6, and 8) we showed no additional spin in-
teraction terms emerge and the previously shown spin
Hamiltonians (Heisenberg plus four-spin) describe fully
the energy landscape. The calculated prefactors for the
case that the same hopping parameter t exists between
all sites are shown in Tab. I. Additional interaction terms
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will emerge beyond fourth-order perturbation calcula-
tions, e.g., six-order terms for N ≥ 6, which is beyond
the scope of this paper.

2. Spin S ≥ 1

The extension to systems with larger spins per site,
which is made possible by more than one half-filled or-
bital per site, is in principle straightforward, but in
practice significantly more complex. The Hilbert space
becomes much larger and we need to switch from a
single-band to a multi-band Hubbard model with quite
some additional interaction parameters, which ultimately
adds considerable complexity to the prefactors or the ex-
change parameters of the spin models, respectively (see
Appendix for details). To keep the prefactors simple
and transparent, we discuss here results for the simpli-
fied case, where hopping interactions between equal and
different orbitals are identical and orbital independent,
t′ = t, and the Coulomb repulsion and the exchange in-
teraction of electrons at the same site but different or-
bitals, U ′ = 0 and J ′ = 0, are neglected (see Tab. II),
valid assuming that the Coulomb energy is larger if the
electrons are not just at the same site but also in the same
orbital, i.e. for U ′ � U and J ′ � J . However, these sim-
plifications do not alter the functional nature of the spin
models, just simplify prefactors. The full prefactors can
be found in the appendix.

a. Two sites, spin S = 1. Starting again with the
simplest S = 1 model of two sites with two orbitals per
site, we find in second order perturbation terms in which

two spins are reversed. For example, c†2,2,↓c
†
1,1,↓c1,1,↑c2,2,↑

is such a term for m = 0. As it can be seen, there is
always one orbital per site involved in those spin flips.
Collecting now all the terms which arise in second order
perturbation we again end up with the Heisenberg Hamil-
tonian , but with a prefactor of J = −2t2/(U + JH).

In fourth-order perturbation, however, more important
differences to the system with only one orbital per site
occur. In addition to the term shown above, there appear
additional terms as

c†2,2,↓c
†
2,1,↑c

†
1,2,↑c

†
1,1,↓c1,1,↑c1,2,↓c2,1,↓c2,2,↑ , (19)

where all the electron spins are reversed and thus all or-
bitals are involved in this interaction. For this reason, we
can already see that each site is involved twice in this in-
teraction and therefore has to occur twice in the effective
spin Hamiltonian. And indeed, by using the spin oper-
ators, the resulting effective interaction can be written
as

H2 sites
4thorder ∝

∑′

ij

(
Si · Sj −

n̂in̂j
4

)2

, (20)

which can be simplified into the biquadratic interaction
(2), a Heisenberg term, and a constant energy shift. The

TABLE II. Calculated prefactors of the Heisenberg exchange
(J), the biquadratic (B), the three-spin (Y ) and the four-spin
interactions (K) for different numbers of sites with S > 1/2
obtained by going up to fourth order in the Löwdin parti-
tioning. We set t′ = t and U ′ and J ′ were set to zero (see
text).

sites S J B Y K

2 1 − 2t2

U+JH

−20t4

(U+JH)3
0 0

3 1 − 2t2

U+JH
+ 36t4

(U+JH)3
−20t4

(U+JH)3
−40t4

(U+JH)3
0

4 1 − 2t2

U+JH
+ 96t4

(U+JH)3
−20t4

(U+JH)3
−40t4

(U+JH)3
−10t4

(U+JH)3

2 3/2 − 2t2

U+JH
+ 6t4

(U+JH)3
−20t4

(U+JH)3
0 0

3 3/2 − 2t2

U+JH
+ 90t4

(U+JH)3
−20t4

(U+JH)3
−40t4

(U+JH)3
0

prefactors for this system and the systems introduced in
the following with the previously named assumptions on
the parameters of the multi-band Hamiltonian (5) can be
found in Tab. II. The prefactors for systems treated with
an unrestricted parameter set are shown in the Appendix.

The appearance of the biquadratic interaction for S =
1 dimers is consistent with the spin-algebra, which states
that the highest independent powers of pair interactions
is given by (Si · Sj)2S . For S = 1/2 dimers, the bi-
quadratic term can always be expressed as the sum of
the Heisenberg term and a constant shift, and thus dis-
appears. Similarly, in S = 1 systems higher powers of
(S1 · S2)n, with n ≥ 3, can be expressed in a sum of the
biquadratic and Heisenberg terms as well as a constant
shift, and disappear too.
b. Three sites, spin S = 1. Considering a system

with three sites and two orbitals at each site, second or-
der perturbation theory reproduces again the Heisenberg
model between different pairs of the three sites. Fourth-
order perturbation enables the reverse of spins in four
different orbitals, which in a system with three sites can
be facilitated in two different ways: either the four or-
bitals are taken just at two different sites or they are
distributed over all three sites, of which one is the site
where the electron spin is reversed in both orbitals, while
at each of the other two sites only one orbital is involved
in the hopping. The former one results again in a bi-
quadratic interaction. The latter one includes terms like

n̂3,1,↑n̂1,2,↓c
†
3,2,↓c

†
2,2,↑c

†
2,1,↑c

†
1,1,↓c1,1,↑c2,1,↓c2,2,↓c3,2,↑ ,

(21)
where we can clearly see that two orbitals (here, the first
orbital at site 3 and the second at site 1) are not affected
by this hopping term, while the other four change their
spin direction. At the end this can be summarized in
terms of an effective Hamiltonian

H3 sites
4thorder ∝

∑′

ijk

(
Si · Sj −

n̂in̂j
4

)(
Si · Sk −

n̂in̂k
4

)
,

(22)
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which again can be structured into three different terms
namely a Heisenberg term, a constant shift, and

H3 sites
4 spins ∝

∑′

ijk

(Si · Sj) (Si · Sk) , (23)

a Hamiltonian expression we identify as the three-spin
interaction introduced in (4). The exchange constant of
the three-spin interaction is called Y henceforth. As we
can see from the collection of prefactors in Tab. II and
Appendix, the three-spin constant, Y , is in the same or-
der of magnitude and even by a factor of 2 larger than
the biquadratic constant, B. Therefore, we suppose that
this three-spin interaction can play an important role in
systems in which other higher-order interactions such as
the biquadratic or four-spin interaction are comparable
in size to the Heisenberg one. Iron based thin-film sys-
tems are candidates for such a behavior, because the local
magnetic moments and spins, respectively, of Fe are large
in these environments. We will demonstrate this below
for the exemplary systems Fe/Rh(111) and Fe/Ru(0001).

c. Four sites, spin S = 1. The behavior within the
second order perturbation is the same as before. How-
ever, within fourth-order perturbation calculations and
in comparison to the derivation of the interaction across
three sites additional interaction terms are expected since
the four orbitals which are involved in the interactions of
the fourth-order perturbation can now either be divided-
up over 2, 3, or 4 sites resulting in the biquadratic, three-
spin, and four-spin interactions, respectively. The pref-
actors can be found in Table II. So we have shown that
the four-spin interaction is not just a result that occurs
in S = 1/2 systems, but also in those with S = 1.
d. Spin S > 1. To clarify whether the previously

shown results apply only to S = 1-systems or can also
be applied to systems with larger spins, we have also in-
vestigated systems with S = 3/2 that represent systems
having three orbitals per site exhibiting local magnetic
moments of 3 µB. As we can see in Table II the consid-
ered systems can all be explained by the interplay of the
exchange, biquadratic, three-spin and four-spin interac-
tions.

Additional magnetic interaction terms making use of
the nature of at least three orbitals per site would re-
quire the concerted hopping of six electrons, which is be-
yond the fourth-order perturbation theory to which we
restrict ourselves in this paper. Candidate interactions
of sixth-order perturbation treatments are six-spin inter-
actions involving 2 to 6 sites. One obvious candidate of a
sixth-order perturbation treatment is a possible bicubic
interaction

H6 ∝
∑′

ij

(Si · Sj)3 (24)

In order to check whether this bicubic interaction occurs
within higher orders, we have decided to study the sys-
tem of two sites with three orbitals up to sixth order in
the perturbation. Indeed additional terms occur within

the sixth order, which can be explained by the bicubic

interaction with a prefactor of 336t6

(U+2JH)5 . In general, how-

ever, it can be assumed that this bicubic interaction as
well as the other possible six-order terms are small com-
pared to the previously studied second- and fourth-order
interactions because it occurs in an even higher order of
the perturbation.

B. Spin models at surfaces due to hopping of
electrons beyond nearest neighbor

Up to now, we presented the results assuming that the
hopping properties of the electrons between all the atoms
are the same. In a real system this is not the case as the
value of the hopping parameter t depends mainly on the
distance between the two involved atoms, but also on the
type of orbitals, the symmetry, the geometry or the en-
vironment. In the case of model Hamiltonians describing
strongly localized electron systems, the nearest-neighbor
(NN) approximation is often sufficient (all hopping pa-
rameters t = 0 between all atom pairs except NN pairs)
and the spin models derived above can be applied prac-
tically directly. On the other hand, assuming, the same
hopping parameter t is used between all atom pairs, for
example, the interaction between four atoms corresponds
to the description of the interactions on a regular tetra-
hedron. In general, there is a lot of interest in film, inter-
face or surface geometries of periodic lattices with atom
coordinations for which the NN or constant-pair approx-
imation is unrealistic. We want to take this into account
and evaluate above spin models for two common types of
surfaces, the (001) or (111) oriented surface of fcc crys-
tals using a model with nearest and next-nearest neigh-
bor (NNN) hopping. We focus on a periodic S = 1/2
system of one atom type with electron interactions in-
volving maximal four lattice sites as indicated in Fig. 2,
where the (001) and (111) geometry are sketched. Ob-
viously, the former represents a square arrangement of
the surface atoms, the latter is a triangular or diamond
arrangement of an hexagonal lattice.

Within both geometries there are two different dis-
tances between atoms, the NN and NNN distances. Thus
the respective electron hopping is described by two dis-
tinct hopping constants, t1 and t2, summarized to t∆,
with ∆ ∈ 1, 2. Going up to second-order perturbation
we find as expected the Heisenberg exchange which reads
independent of surface geometry

H1 = −
∑′

i,δ∆

J∆ Si · Si+δ∆ with J∆ = −2 t2∆
U

,

with the respective prefactors J1 (J2) being the exchange
constant between NN (NNN) pairs.

∑
δ∆

denotes the

summation over the NN (∆ = 1) and NNN pairs (∆ = 2).
δ denotes the number of NN (NNN) pairs. While there
are two NNN pairs for the square lattice, there is only
one pair on the hexagonal one, as one of the diagonals
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(a) (b) 

FIG. 2. Investigated geometries: (a) a square arrangement
of atoms as it occurs e.g., at the (001)-surface of a bcc or
fcc crystal and (b) a hexagonal arrangement as it occurs at
the (111) surface of an fcc crystal or the (0001) surface of an
hexagonal lattice. Sketched are the positions of the atoms
and two different neighbor distances. t1 (t2) represents the
hopping between nearest (next-nearest) neighbors.

(see diagonal connecting atoms 1 and 3 in Fig. 2) is also
a NN pair.

While the second-order expression hold independent on
the surface geometry, this is different for fourth-order cor-
rections to the Heisenberg exchange and for the higher-
order interactions, where we have to differentiate between
the square and the hexagonal lattice.

1. (100) surface

At fourth-order perturbation, we expect additional
terms to the Heisenberg model proportional to t4. For
the square lattice, fourth-order perturbation results in a
correction of J1 by 10t41/U

3 and a correction of J2 by
(8t42 + 4t21t

2
2 − 2t41)/U3. It is worth to point out that

the correction to J2 does not only contain the naively
expected correction proportional to t42, but includes also
correction terms involving NN-hopping proportional to
t21 t

2
2 and t41. This has its origin in (17) where contri-

butions to a ring hopping involving sites i and j have
contributions to the pair-exchange between the spins at
sites i and j.

For a S = 1/2 system and fourth-order perturbation
in electron hopping we also obtain contributions to the
four-spin interaction, here expressed on a cluster of four
sites:

H4 =−K1[ (S1 · S2) · (S3 · S4)

+ (S1 · S4) · (S2 · S3)

− (S1 · S3) · (S2 · S4) ]

−K2 (S1 · S3) · (S2 · S4) (25)

The first term follows the functional form given in (17)
and includes all permutations of exclusive NN interac-
tion. The related prefactor becomes K1 = −80 t41/U

3.
More precisely, the variation of the hopping ampli-

tudes between different sites result in preferred paths for

a ring hopping. Thus, we expect additional contribu-
tions from the NNN-terms to the four-spin interaction.
We have found that these modifications do not affect the
previously discussed NN-ring hopping but add additional
permutations of coupling strength K2 ∝ t21 t

2
2 of the in-

volved sites to the Hamiltonian and can be written in
terms of the second term in Eq. (25). Taking a geomet-
rical picture, this corresponds to a bow-tie-shaped loop
which contains two NNN-hopping events and thus hop-
ping terms over the diagonals of the square. We there-
fore call this term bow-tie four-spin term in the follow-
ing. The prefactor of this term was determined to be
K2 = −160 t21 t

2
2/U

3. Thus, the ratio between the prefac-
tors for the two mentioned four-spin terms is

K2

K1
= 2

(
t2
t1

)2

. (26)

Depending on the ratio of t1 and t2, the diagonal term
can be of the same order of magnitude as the conventional
four-spin term or it might even dominate and should
therefore not be neglected in applications of the spin-
model, e.g., Monte Carlo or spin-dynamic simulations.

Transferring our findings to an infinite lattice, the four-
spin interactions can in general be be written as

H4 = −
∑
〈ijkl〉�

(
K1[(Si · Sj)(Sk · Sl) + (Si · Sl)(Sj · Sk)]

+ (K2 −K1)(Si · Sk) · (Sj · Sl)
)
. (27)

Here, the notation 〈ijkl〉� denotes sums over unique non-
crossing quatruplets of sites of closed loops i→ j → k →
l→ i.

In the case of site-independent hopping amplitude, i.e.,
t1 = t2 and thus 2K1 = K2, Eq. (27) simplifies to
(23) while is corresponds to Eq. (3) in case of pure NN-
hopping, i.e., t2 = K2 = 0. The interaction parameters
J and K depend on the hopping matrix elements t only
in even powers and thus are independent of their sign.

2. (111) surface

The diamond geometry of the hexagonal (111) lattice
offers a different ratio between NNN- and NN-bonds com-
pared to the square lattice (see Fig. 2), which is at the
end reflected in different contributions to the spin Hamil-
tonian.

Collecting all Heisenberg-like terms up to fourth-order
perturbation results in the following prefactors:

J1 = −2
t21
U

+ 8
t41
U3

+ 4
t31t2
U3
− 2

t21t
2
2

U3
(28)

J2 = −2
t22
U

+ 8
t42
U3

+ 4
t31t2
U3
− 2

t41
U3

(29)

The contributions to the four-spin interactions are equiv-
alent to those for the square lattice (Eq. (25)) with the
exception of the prefactor of the diagonal four-spin term
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which changes to K2 = −160t31t2/U
3. Therefore, the ra-

tio

K2

K1
= 2

(
t2
t1

)
(30)

makes it even more likely that this term is comparable
in size compared to the conventional four-spin term. In
difference to the square lattice, the interaction parame-
ters J and K of the hexagonal lattice depend not only
on even powers of the hopping matrix elements t but also
on the odd ones. Therefore, here the sign of the hopping
matrix elements has a direct impact on the interaction
parameters.

C. Importance of three-spin interaction in iron
based magnetic thin-film systems

Now we turn to the description of real magnetic
atomic monolayer thick transition-metal films. Mag-
netic beyond-Heisenberg behavior has been theoretically
predicted and experimentally observed for several sys-
tems [10, 24, 39–43]. The materials specific theoretical
modeling of magnetic interactions is generally carried out
by means of density functional theory (DFT) and can be
pursued along two different paths: (i) The parameters, t,
U , JH, etc., entering the Hubbard model (5) are deter-
mined directly from DFT and expressions derived above
are executed to obtain the exchange parameters of the
different magnetic interaction terms. Although it is a
possible route, the determination of the Coulomb U and
the Hund JH parameters have some uncertainties due
the screening that should be properly included as a re-
sult of those electrons not treated in the Hubbard model
explicitly, uncertainties that are sometimes too large to
determine the exchange parameters of the spin-model to
the level that it is predictable. (ii) The second approach,
which we will follow, is to take the classical limit of the
spin models above, i.e., work with classical vector spin,
S, instead of vector operators, S, and calculate the to-
tal energies for a large spectrum of magnetic states in
momentum or real space using DFT. The spin model pa-
rameters are then obtained by comparing the total energy
landscape calculated by DFT and the spin model.

1. Fe/Rh(111)

Al-Zubi et al. [44] systematically investigated the mag-
netism of Fe monolayers on hexagonal surfaces of dif-
ferent 4d transition-metal substrates using DFT. They
calculated total energies of a large spectrum of mag-
netic structures. This included both spin-spiral states for
wave vectors q along the high-symmetry lines of the two-
dimensional Brillouin zone and so-called multi-q states
of particular q-vectors that allow superpositions of spin
spirals of symmetry-equivalent q-vectors. The most re-
markable finding was the prediction of a previously un-

known up-up-down-down (uudd) state as ground state in
Fe/Rh(111), recently confirmed by spin-polarized scan-
ning tunneling microscopy (SP-STM) measurements [45].
The uudd state can be interpreted as interference of 2
spin spirals with wave vectors of opposing directions (2Q-
state).

In order to understand the origin of this unknown uudd
state, they mapped the DFT results onto a spin Hamilto-
nian, which included the Heisenberg interaction extended
by the biquadratic and the four-spin interaction, the two
latter within the nearest-neighbor approximation, and
determined the exchange parameters. The choice of the
spin Hamiltonian was taken ad hoc, but motivated by
previous successes of similar systems [24, 42, 43]. How-
ever, they made some puzzling observations. While the
energy difference of two unrelated uudd states (see Fig.2
of Ref. 44) characterized by two different wave vectors q
should be the same in comparison to the spin-spiral state
(1Q-state) with the corresponding q-vector, i.e.,

E2Q − E1Q = 4 (2K −B) , (31)

not only the absolute value, but also the sign varied for
both.

Several attempts were made to resolve this discrep-
ancy, but only the extension of the spin Hamiltonian by
the three-spin interaction, which we systematically de-
rived in this paper on grounds of the Hubbard model
as an ignored interaction being on the same level as the
previously applied biquadratic and four-spin terms, was
able to resolve this issue. In fact, depending on the sign
of the exchange parameter, the three-spin interaction se-
lects one of the two uudd states to become ground state
and indeed it was shown that this explains the magnetic
ground state of Fe/Rh(111) [45].

2. Fe/Ru(0001)

We show here that a monolayer of Fe deposited on
Ru(0001) is a further materials system with beyond-
Heisenberg behavior and a system which requires the
contribution of the three-spin interaction in addition to
the biquadratic and four-spin interaction for a proper de-
scription of the magnetic properties by a spin model. In
difference to Fe/Rh(111), DFT calculations of Al-Zubi et
al. [44] revealed the 120◦ Néel-state (from atom to atom
the direction of the magnetic moment changes by 120◦) as
the energetically most favorable of all investigated states,
and thus the higher-order interactions do not directly de-
termine the ground state, but the DFT calculations show
that this system exhibits a similarly puzzling energy spec-
trum as Fe/Rh(111) and a proper spin model is required
for the description of spin-dynamics, spin excitation and
the determination of thermodynamic properties.

In the following, we determine the exchange parame-
ter B, Y , and K of the three beyond-Heisenberg inter-
actions, biquadratic, three-spin, and four-spin, respec-
tively, in the NN-approximation analyzing the ab initio
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data of Al-Zubi et al. [44]. While the single-wavevector
spin spiral (1Q-state) is an eigensolution of the clas-
sical Heisenberg model for a periodic lattice, beyond-
Heisenberg interactions couple modes of different 1Q-
states to multi-Q states with different energy and show
that this can result in a more accurate description of
Fe/Rh(0001). Therefore, we focus in the following on
those single-Q vectors in the two-dimensional hexagonal
Brillouin zone of q-vectors defined in reciprocal space
as q = (q1, q2) in units of the inplane reciprocal lat-

tice vectors b1(2) = (2π/a)(1/
√

3, +
(−)1), where a is the

hexagonal in-plane lattice constant, that can form multi-
Q states out of symmetry-equivalent 1Q-states. This
includes the high-symmetry point M = (1/2, 1/2) rep-
resenting the row-wise antiferromagnetic state, that can
form a 3Q-state and the two states (ΓM)/2 = ±(1/4, 1/4)
and 3/4(ΓK) = (±1/4,∓1/4) on the high-symmetry
lines of the Brillouin zone whose superposition of propa-
gating and counterpropagating waves, e.g., (ΓM)/2 and
−(ΓM)/2, form 2Q- or uudd -states, respectively.

Inserting now the spin structure expressed as a spin-
spiral wave, Si = S(cos(qRi), sin(qRi), 0), where Ri de-
notes the position vector to site i, for wave vector q, or
linear combination of those into the respective expres-
sions for the Heisenberg, biquadratic, three- and four-
spin interactions we obtain the following expressions

E3Q − EM =
16

3
(2K +B − Y ) = 4.6 meV (32)

E
2Q,ΓM

2

− EΓM
2

= 4 (2K −B − Y ) = −30.3 meV (33)

E
2Q, 3ΓK

4

− E 3ΓK
4

= 4 (2K −B + Y ) = 7.5 meV (34)

which we compared with the energy differences (in meV)
obtained from DFT. As one can see, the previously iden-
tical energy differences for the two uudd states are now
separated by 8Y due to the three-spin interaction. For
the prefactors of the three interactions we obtain:

B = 4.22 meV, Y = 4.73 meV, K = 0.68 meV (35)

The value of the three-spin exchange parameter, Y , is in
the same order of magnitude as the biquadratic interac-
tion, but is also significantly large compared to the NN-
Heisenberg exchange constant J1 (J1 = −6.4 meV) [64]
and should therefore not be neglected.

Based on our investigation we would argue that the
previously puzzling results for Fe/Ru(0001) are the re-
sult of the interplay between the biquadratic and a strong
three-spin interaction, which favors one of the magnetic
uudd textures over the other, an energy difference that
could not be resolved before when the three-spin interac-
tion had been neglected.

A final comment on the evaluation of the three-spin
interaction. Analogously to the discussion of (25) and
(27) the expression (23) can be simplified to

H3 = −2Y
∑
〈ijk〉∆

[(Sj · Si)(Si · Sk) + (Si · Sj)(Sj · Sk)

+(Si · Sk)(Sk · Sj)] (36)

summing over triangles of NN-sites.

IV. SUMMARY AND CONCLUSIONS

In this paper we derived consistently and systemati-
cally the spin Hamiltonian due to interacting electrons up
to fourth-order perturbation theory in the Löwdin parti-
tioning algorithm. Starting point was the rotationally
invariant multi-orbital Hubbard model that described
the interacting electrons on a lattice. We showed that
Löwdin’s downfolding technique is an efficient approach
to map the effect of the interacting electrons onto an ef-
fective spin model. As a result we obtain the spin Hamil-
tonian

H = (H1 +H4){forS ≥ 1/2}+ (H2 +H3){forS ≥ 1} ,
(37)

which consists of the Heisenberg Hamiltonian H1 (1), the
biquadratic (four-spin-two-site) H2 (2), the three-spin
(four-spin-three-site) H3 (4), and the four-spin Hamil-
tonian (four-spin-four-site) H4 (3). The Heisenberg term
emerges already in second-order perturbation, but the
fourth-order perturbation term adds to the exchange cou-
pling parameter. Characteristic of the fourth-order terms
is the hopping of electrons between four orbitals that
connect maximally four sites. This form remains correct
also for higher spins S treated up the fourth-order per-
turbation theory. On the other hand S = 3/2 has also
sixth-order contributions and S = 2, would have sixth-
and eighth-order contributions, which we have not cal-
culated. Since the dimension of the matrices H0 and H1

in the Löwdin algorithm grows binomially with the num-

ber of orbitals as
(
n
n/2

)2
, the algorithm becomes quickly

involved and at the same time the exchange coupling pa-
rameters are becoming increasingly smaller and the terms
less important. The exchange coupling parameters of the
different Hamiltonians Hi, with i = 1, . . . , 4, are summa-
rized in detail in the Appendix.

The spin-orbit interaction and the crystal field effects
were neglected. Subject to the spin-orbit interaction, Sz
does not commute anymore with the Hamiltonian, thus
the Hamiltonian does not block-diagonalize anymore for
different m, and the Löwdin partitioning becomes more
involved.

We showed that our technique is capable of verify-
ing the commonly applied Heisenberg model, as well as
the four-spin and biquadratic interaction, but unraveled
in addition the occurrence of the three-spin interaction.
The importance of the three-spin interaction was ver-
ified for the systems of one monolayer Fe on Rh(111)
and Ru(0001), where ab initio calculations [44] predicted
puzzling results on the magnetic states that now could
be consistently explained. The unusual up-up-down-
down ground state stabilized by the three-spin interac-
tion in Fe/Rh(111) could recently be confirmed experi-
mentally [45].
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Our derivations suggest a direct determination of the
magnetic interaction parameters by calculating the Hub-
bard parameters, i.e., the hopping, Coulomb as well as
Hund’s coupling parameters, directly from DFT. Yet, not
only the calculation of the parameters can become quite
elaborated for extended systems involving partly addi-
tional approximations, but also the determination of the
exact relations in accordance with the crystal structure
of the system as can be concluded from the appendix.
Therefore, in this work, we focused in the material spe-
cific section of this paper on the well-established total
energy approach, but it is worth to explore the direct
evaluation of the parameters in the future.
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Appendix: Prefactors for the complete model

In the main text, we focused on presenting the prefac-
tors, or exchange parameter, respectively, of the different
spin-models for the simplified case of orbital independent
hopping interactions (ti,α,j,α = t′i,α,j,α′ = t) and for the

limits J ′ = 0 and U ′ = 0. Here, we show the extension
of the results for which the hopping interaction between
the same (ti,α,j,α = t) and between different orbitals
(t′i,α,j,α′ = t′) are distinct. Analogously the distinction
between intra- and inter-orbital onsite Coulomb repul-
sion U , and U ′, respectively, and exchange interaction,
J and J ′, respectively, is taken into account. Otherwise,
all interaction parameters are kept orbital independent
for simplicity and remain site independent assuming a
periodic lattice of one atom type.

In the following, we will denote exchange parameters
as Xs×o with X ∈ (J , B, K, Y ) and s and o denoting
the number of sites and orbitals, respectively. The pref-
actors are calculated up to fourth order in the Löwdin
partitioning.

J2×2 =− t2 + t′2

U + JH
+

4(t2 + t′2)2

(U + JH)3
− 16t2t′2

(U + JH − U ′ − J ′H)(U + JH)2

B2×2 =− 2(t2 + t′2)2

(U + JH)3
+

(t2 − t′2)2

2(U + JH)2JH
+

4(t2 − t′2)2

(2U + U ′)(U + JH)2
+

t4 − 14t2t′2 + t′2

(U + JH − U ′ − J ′H)(U + JH)2

+
(t2 − t′2)2

(U + JH − U ′ + J ′H)(U + JH)2

J3×2 =− t2 + t′2

U + JH
+

12(t2 + t′2)2

(U + JH)3
− 3(t4 + 6t2t′2 + t′4)

(2U + 2JH − U ′ − J ′H)(U + JH)2

− (t2 − t′2)2 ·
(
− 27

4J2
H(U + JH)

+
12

J2
H(2U + JH)

+
3

4J2
H(U + 3JH)

− 3

2JH(U + JH)2

+
3

(2U + 2JH − U ′ + J ′)(U + JH)2
+

3

(2U + JH + U ′)(U + JH)2

)

B3×2 =− (t2 + t′2)2 ·
(

+
2

(U + JH)3
+

3

(U + JH − U ′ − J ′H)(U + JH)2

)
− (t2 − t′2)2 ·

(
− 1

2JH(U + JH)2
− 1

(U + JH − U ′ + J ′H)(U + JH)2

− 4

(2U + U ′)(U + JH)2
− 4

(U + JH − U ′ − J ′H)(U + JH)2

)

Y3×2 =− 16t2t′2

(U + JH − U ′ − J ′H)(U + JH)2
+

2t4 + 12t2t′2 + 2t′4

(2U + 2JH − U ′ − J ′H)(U + JH)2
− 6t4 + 20t2t′2 + 6t′4

(U + JH)3
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− (t2 − t′2)2 ·
(
− 1

2J2
H(U + 3JH)

+
1

JH(U + JH)2
+

9

2J2
H(U + JH)

− 8

J2
H(2U + JH)

− 2

(2U + JH + U ′)(U + JH)2
− 2

(2U + 2JH − U ′ + J ′H)(U + JH)2

)

J4×2 =− t2 + t′2

U + JH

− (t2 − t′2)2 ·
(

+
24

J2
H(2U + JH)

− 27

2J2
H(U + JH)

+
3

2J2
H(3JH + U)

− 3

JH(U + JH)2

+
6

(2U + 2JH − U ′ + J ′H)(U + JH)2
+

6

(2U + JH + U ′)(U + JH)2

)
+

23t4 + 58t2t′2 + 23t′4

(U + JH)3
− 6t4 + 36t2t′2 + 6t′4

(2U + 2JH − U ′ − J ′H)(U + JH)2
+

16t2t′2

(U + JH − U ′ − J ′H)(U + JH)2

B4×2 =− (t2 − t′2)2 ·
(
− 1

2JH(U + JH)2
− 4

(2U + U ′)(U + JH)2
− 1

(U + JH − U ′ + J ′H)(U + JH)2

)
− 2(t4 + 2t2t′2 + t′4)

(U + JH)3
+

t4 − 14t2t′2 + t′4

(U + JH − U ′ − J ′H)(U + JH)2

Y4×2 =− (t2 − t′2)2 ·
(
− 2

(2U + 2JH − U ′ + J ′H)(U + JH)2
− 2

(2U + JH + U ′)(U + JH)2
− 8

(2U + JH)J2
H

+
9

2(U + JH)J2
H

− 1

2J2
H(U + 3JH)

+
1

(U + JH)2JH

)
+

2t4 + 12t2t′2 + 2t′4

(2U + 2JH − U ′ − J ′H)(U + JH)2
− 16t2t′2

(U + JH − U ′ − J ′H)(U + JH)2
− 6t4 + 20t2t′2 + 6t′4

(U + JH)3

K4×2 =− 5(t4 + 6t2(t′2) + t′4)

4(U + JH)3

J2×3 =− 2

3

(t2 + 2t′2)

(U + 2JH)
− 8t′2(t− t′)2

3(U + 5JH − U ′ − J ′H)(U + 2JH)2
− (t2 + 2tt′ + 3t′2)(t− t′)2

(U + JH + U ′)(U + 2JH)2
+

4(t2 + 2t′2)2

(U + 2JH)3

− (t2 + 2tt′ + 3t′2)(t− t′)2

2(U + 2JH − U ′ + J ′H)(U + 2JH)2
− 3t4 + 76t2t′2 + 76tt′3 + 25t′4

6(U + 2JH − U ′ − J ′H)(U + 2JH)2
− (t2 − t′2)2

9(U + 2JH)2JH

B2×3 = +
(t2 + 2tt′ + 3t′2)(t− t′)2

3(U + 2JH − U ′ + J ′H)(U + 2JH)2
+

3t4 − 52t2t′2 − 52tt′3 − 7t′4

9(U + 2JH − U ′ − J ′H)(U + 2JH)2

+
16t′2(t− t′)2

9(U + 5JH − U ′ − J ′H)(U + 2JH)2
+

2(t2 + 2tt′ + 3t′2)(t− t′)2

3(U + JH + U ′)(U + 2JH)2

+
2(t− t′)2(t+ t′)2

27(U + 2JH)2JH
+

8(t2 + 2t′2)2

9(U + 2JH)3

J3×3 =− 2

3

(t2 + 2t′2)

(U + 2JH)
− −3t4 + 20t2t′2 + 20tt′3 − t′4

6(U + 2JH − U ′ − J ′H)(U + 2JH)2
− −110t4 − 456t2t′2 − 16tt′3 − 444t′4

9(U + 2JH)3
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− −10t4 − 80t2t′2 − 40tt′3 − 50t′4

3(2U + 4JH − U ′ − J ′H)(U + 2JH)2

− (t− t′)2 ·
[

+
t2 + 2tt′ + 3t′2

(U + 2JH)2
·
(
− 20(U + 2JH)

27JH(5JH + U)
+

1

U + JH + U ′
+

20

3(2U + 3JH + U ′)

+
1

2(U + 2JH − U ′ + J ′H)
+

10

3(2U + 4JH − U ′ + J ′H)

)
+

23t2 + 46tt′ + 63t′2

27(U + 2JH)2JH
− 8t′2

3(U + 5JH − U ′ − J ′H)(U + 2JH)2

]

B3×3 = +
(t− t′)2

(U + 2JH)2
·
(

2t2 + 4tt′ + 6t′2

3(U + JH + U ′)
+

16t′2

9(U + 5JH − U ′ − J ′H)
+

t2 + 2tt′ + 3t′2

3(U + 2JH − U ′ + J ′H)
+

2(t+ t′)2

27JH

)
+

3t4 − 52t2t′2 − 52tt′3 − 7t′4

9(U + 2JH − U ′ − J ′H)(U + 2JH)2
+

8(t2 + 2t′2)2

9(U + 2JH)3

Y3×3 =− (t− t′)2 · (t2 + 2tt′ + 3t′2) ·
[
− 1

(U + 2JH)2
·
(

16

9(2U + 3JH + U ′)
+

8

9(2U + 4JH − U ′ + J ′H)
+

16

81JH

)
+

16

243(U + 2JH)J2
H

− 16

243(5JH + U)J2
H

]
− 1

(U + 2JH)2
·
[
− 8t4 + 64t2t′2 + 32tt′3 + 40t′4

9(2U + 4JH − U ′ − J ′H)
+

16t′2(t′ + 2t)2

9(U + 2JH − U ′ − J ′H)

+
64t4 + 384t2t′2 + 128tt′3 + 288t′4

27(U + 2JH)

]
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Lett. 107, 017204 (2011).

[16] R. Singer, F. Dietermann, and M. Fähnle, Phys. Rev.
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[20] E. Şaşıoğlu, L. M. Sandratskii, P. Bruno, and
I. Galanakis, Phys. Rev. B 72, 184415 (2005).

[21] In this paper the spin-orbit interaction is neglected and
thus the Dzyaloshinskii-Moriya interaction or the mag-
netic anisotropies are not part of the discussion.
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and R. Wiesendanger, Phys. Rev. Lett. 101, 027201
(2008).

[24] P. Kurz, G. Bihlmayer, K. Hirai, and S. Blügel, Phys.
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