000874106 001__ 874106
000874106 005__ 20240610121047.0
000874106 0247_ $$2doi$$a10.1103/PhysRevLett.124.072001
000874106 0247_ $$2ISSN$$a0031-9007
000874106 0247_ $$2ISSN$$a1079-7114
000874106 0247_ $$2ISSN$$a1092-0145
000874106 0247_ $$2Handle$$a2128/24568
000874106 0247_ $$2altmetric$$aaltmetric:76699201
000874106 0247_ $$2pmid$$apmid:32142337
000874106 0247_ $$2WOS$$aWOS:000515063000005
000874106 037__ $$aFZJ-2020-01215
000874106 082__ $$a530
000874106 1001_ $$00000-0002-7504-3107$$aDu, Meng-Lin$$b0
000874106 245__ $$aInterpretation of the LHCb P c States as Hadronic Molecules and Hints of a Narrow P c ( 4380 )
000874106 260__ $$aCollege Park, Md.$$bAPS$$c2020
000874106 3367_ $$2DRIVER$$aarticle
000874106 3367_ $$2DataCite$$aOutput Types/Journal article
000874106 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1584447971_22060
000874106 3367_ $$2BibTeX$$aARTICLE
000874106 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874106 3367_ $$00$$2EndNote$$aJournal Article
000874106 520__ $$aThree hidden-charm pentaquark Pc states, Pc(4312), Pc(4440), and Pc(4457) were revealed in the Λ0b→J/ψpK− process measured by LHCb using both run I and run II data. Their nature is under lively discussion, and their quantum numbers have not been determined. We analyze the J/ψp invariant mass distributions under the assumption that the crossed-channel effects provide a smooth background. For the first time, such an analysis is performed employing a coupled-channel formalism with the scattering potential involving both one-pion exchange as well as short-range operators constrained by heavy quark spin symmetry. We find that the data can be well described in the hadronic molecular picture, which predicts seven Σ(*)c¯D(*) molecular states in two spin multiplets, such that the Pc(4312) is mainly a Σc¯D bound state with JP=1/2−, while Pc(4440) and Pc(4457) are Σc¯D∗ bound states with quantum numbers 3/2− and 1/2−, respectively. We also show that there is evidence for a narrow Σ∗c¯D bound state in the data which we call Pc(4380), different from the broad one reported by LHCb in 2015. With this state included, all predicted Σc¯D, Σ∗c¯D, and Σc¯D∗ hadronic molecules are seen in the data, while the missing three Σ∗c¯D∗ states are expected to be found in future runs of the LHC or in photoproduction experiments.
000874106 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000874106 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000874106 588__ $$aDataset connected to CrossRef
000874106 7001_ $$0P:(DE-HGF)0$$aBaru, Vadim$$b1
000874106 7001_ $$00000-0002-2919-2064$$aGuo, Feng-Kun$$b2
000874106 7001_ $$0P:(DE-Juel1)131182$$aHanhart, Christoph$$b3$$ufzj
000874106 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b4
000874106 7001_ $$0P:(DE-HGF)0$$aOller, José A.$$b5
000874106 7001_ $$0P:(DE-HGF)0$$aWang, Qian$$b6$$eCorresponding author
000874106 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.124.072001$$gVol. 124, no. 7, p. 072001$$n7$$p072001$$tPhysical review letters$$v124$$x1079-7114$$y2020
000874106 8564_ $$uhttps://juser.fz-juelich.de/record/874106/files/PhysRevLett.124.072001.pdf$$yOpenAccess
000874106 8564_ $$uhttps://juser.fz-juelich.de/record/874106/files/PhysRevLett.124.072001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874106 909CO $$ooai:juser.fz-juelich.de:874106$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874106 9101_ $$0I:(DE-HGF)0$$60000-0002-7504-3107$$aExternal Institute$$b0$$kExtern
000874106 9101_ $$0I:(DE-HGF)0$$60000-0002-2919-2064$$aExternal Institute$$b2$$kExtern
000874106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131182$$aForschungszentrum Jülich$$b3$$kFZJ
000874106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b4$$kFZJ
000874106 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000874106 9141_ $$y2020
000874106 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874106 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874106 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874106 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2017
000874106 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2017
000874106 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874106 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874106 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874106 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874106 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874106 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874106 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874106 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874106 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874106 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874106 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000874106 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000874106 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000874106 9801_ $$aFullTexts
000874106 980__ $$ajournal
000874106 980__ $$aVDB
000874106 980__ $$aUNRESTRICTED
000874106 980__ $$aI:(DE-Juel1)IAS-4-20090406
000874106 980__ $$aI:(DE-Juel1)IKP-3-20111104
000874106 981__ $$aI:(DE-Juel1)IAS-4-20090406