001     874183
005     20240610115422.0
024 7 _ |a 10.1039/C9CP04083H
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a 2128/24409
|2 Handle
024 7 _ |a pmid:31778132
|2 pmid
024 7 _ |a WOS:000502767400022
|2 WOS
037 _ _ |a FZJ-2020-01283
082 _ _ |a 540
100 1 _ |a Hess, Melissa
|0 P:(DE-Juel1)176922
|b 0
|u fzj
245 _ _ |a Size effects on rotational particle diffusion in complex fluids as probed by Magnetic Particle Nanorheology
260 _ _ |a Cambridge
|c 2019
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582874031_8447
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rheological approaches based on micro- or nanoscopic probe objects are of interest due to the low volume requirement, the option of spatially resolved probing, and the minimal-invasive nature often connected to such probes. For the study of microstructured systems or biological environments, such methods show potential for investigating the local, size-dependent diffusivity and particle–matrix interactions. For the latter, the relative length scale of the used probes compared to the size of the structural units of the matrix becomes relevant. In this study, a rotational-dynamic approach based on Magnetic Particle Nanorheology (MPN) is used to extract size- and frequency-dependent nanorheological properties by using an otherwise well-established polymer model system. We use magnetically blocked CoFe2O4 nanoparticles as tracers and systematically vary their hydrodynamic size by coating them with a silica shell. On the polymer side, we employ aqueous solutions of poly(ethylene glycol) (PEG) by varying molar mass M and volume fraction ϕ. The complex Brownian relaxation behavior of the tracer particles in solutions of systematically varied composition is investigated by means of AC susceptometry (ACS), and the results provide access to frequency dependent rheological properties. The size-dependent particle diffusivity is evaluated based on theoretical descriptions and macroscopic measurements. The results allow the classification of the investigated compositions into three regimes, taking into account the probe particle size and the length scales of the polymer solution. While a fuzzy cross-over is indicated between the well-known macroscopic behavior and structurally dominated spectra, where the hydrodynamic radius is equal to the radius of gyration of the polymer (rh ∼ Rg), the frequency-related scaling behavior is dominated by the correlation length ξ respectively by the tube diameter a in entangled solutions for rh < Rg.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a IHRS-BioSoft - International Helmholtz Research School of Biophysics and Soft Matter (IHRS-BioSoft-20061101)
|0 G:(DE-Juel1)IHRS-BioSoft-20061101
|c IHRS-BioSoft-20061101
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Roeben, Eric
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rochels, Patricia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zylla, Markus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Webers, Samira
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wende, Heiko
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schmidt, Annette M.
|0 P:(DE-Juel1)IHRS-BioSoft-140015
|b 6
|e Corresponding author
773 _ _ |a 10.1039/C9CP04083H
|g Vol. 21, no. 48, p. 26525 - 26539
|0 PERI:(DE-600)1476244-4
|n 48
|p 26525 - 26539
|t Physical chemistry, chemical physics
|v 21
|y 2019
|x 1463-9084
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874183/files/c9cp04083h-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874183/files/c9cp04083h-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874183
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176922
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-Juel1)IHRS-BioSoft-140015
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2017
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
|0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)IHRS-BioSoft-20161118
|k IHRS-BioSoft
|l International Helmholtz Research School of Biophysics and Soft Matter
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)IHRS-BioSoft-20161118
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21