000874227 001__ 874227
000874227 005__ 20220930130230.0
000874227 0247_ $$2doi$$a10.1002/adem.201901206
000874227 0247_ $$2ISSN$$a1438-1656
000874227 0247_ $$2ISSN$$a1527-2648
000874227 0247_ $$2Handle$$a2128/25196
000874227 0247_ $$2WOS$$aWOS:000516271900001
000874227 037__ $$aFZJ-2020-01319
000874227 082__ $$a660
000874227 1001_ $$0P:(DE-Juel1)130483$$aSchreiber, Andrea$$b0$$eCorresponding author
000874227 245__ $$aComparative Life Cycle Assessment of Neodymium Oxide Electrolysis in Molten Salt
000874227 260__ $$aFrankfurt, M.$$bDeutsche Gesellschaft für Materialkunde$$c2020
000874227 3367_ $$2DRIVER$$aarticle
000874227 3367_ $$2DataCite$$aOutput Types/Journal article
000874227 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593521139_1665
000874227 3367_ $$2BibTeX$$aARTICLE
000874227 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874227 3367_ $$00$$2EndNote$$aJournal Article
000874227 520__ $$aRare earth elements are used in renewable energy generation techniques like wind turbines as well as in various high‐tech applications in the automobile industry, electrical engineering, optics, and catalyzers. Due to the environmentally harmful production of rare earths, they have been subject of life cycle assessment investigations in the past years. Most of these studies focus on rare earth oxide production. The subsequent reduction of rare earth oxides to the final metal in a molten salt electrolysis has significant environmental impacts especially on human toxicity. The main drivers are rare earth fluoride production and molten salt electrolysis. In this study, exemplarily a comparative life cycle assessment of neodymium oxide electrolysis in molten salt as well as various neodymium fluoride production processes is conducted. The different assumptions regarding inputs and outputs of the electrolysis process are discussed. Then, the impacts of the electrolysis processes modeled in different ways are analyzed in relation to the entire process chain to produce neodymium. The results show a share of the electrolysis process on the entire process chain varying from 9% to 82% depending on different assumptions. Based on this analysis, improvements for the electrolysis process are proposed.
000874227 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000874227 588__ $$aDataset connected to CrossRef
000874227 7001_ $$0P:(DE-Juel1)130473$$aMarx, Josefine$$b1
000874227 7001_ $$0P:(DE-Juel1)130493$$aZapp, Petra$$b2
000874227 7001_ $$0P:(DE-Juel1)130467$$aKuckshinrichs, Wilhelm$$b3
000874227 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.201901206$$gp. 1901206 -$$n6$$p1901206 -$$tAdvanced engineering materials$$v22$$x1527-2648$$y2020
000874227 8564_ $$uhttps://juser.fz-juelich.de/record/874227/files/Schreiber_et_al-2020-Advanced_Engineering_Materials.pdf$$yOpenAccess
000874227 8564_ $$uhttps://juser.fz-juelich.de/record/874227/files/Schreiber_et_al-2020-Advanced_Engineering_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874227 8767_ $$92020-02-06$$d2020-02-28$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padem.201901206
000874227 909CO $$ooai:juser.fz-juelich.de:874227$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000874227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130483$$aForschungszentrum Jülich$$b0$$kFZJ
000874227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130473$$aForschungszentrum Jülich$$b1$$kFZJ
000874227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130493$$aForschungszentrum Jülich$$b2$$kFZJ
000874227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130467$$aForschungszentrum Jülich$$b3$$kFZJ
000874227 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000874227 9141_ $$y2020
000874227 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874227 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000874227 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENG MATER : 2017
000874227 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874227 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874227 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874227 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874227 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874227 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874227 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000874227 980__ $$ajournal
000874227 980__ $$aVDB
000874227 980__ $$aUNRESTRICTED
000874227 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000874227 980__ $$aAPC
000874227 9801_ $$aAPC
000874227 9801_ $$aFullTexts