000874228 001__ 874228
000874228 005__ 20210130004632.0
000874228 0247_ $$2doi$$a10.1111/pce.13683
000874228 0247_ $$2ISSN$$a0140-7791
000874228 0247_ $$2ISSN$$a1365-3040
000874228 0247_ $$2Handle$$a2128/24425
000874228 0247_ $$2altmetric$$aaltmetric:70706067
000874228 0247_ $$2pmid$$apmid:31734943
000874228 0247_ $$2WOS$$aWOS:000504815500001
000874228 037__ $$aFZJ-2020-01320
000874228 082__ $$a580
000874228 1001_ $$00000-0001-5547-2572$$aOyiga, Benedict C.$$b0
000874228 245__ $$aGenetic components of root architecture and anatomy adjustments to water‐deficit stress in spring barley
000874228 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2020
000874228 3367_ $$2DRIVER$$aarticle
000874228 3367_ $$2DataCite$$aOutput Types/Journal article
000874228 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582894646_8402
000874228 3367_ $$2BibTeX$$aARTICLE
000874228 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874228 3367_ $$00$$2EndNote$$aJournal Article
000874228 520__ $$aRoots perform vital roles for adaptation and productivity under water‐deficit stress, even though their specific functions are poorly understood. In this study, the genetic control of the nodal‐root architectural and anatomical response to water deficit were investigated among diverse spring barley accessions. Water deficit induced substantial variations in the nodal root traits. The cortical, stele, and total root cross‐sectional areas of the main‐shoot nodal roots decreased under water deficit, but increased in the tiller nodal roots. Root xylem density and arrested nodal roots increased under water deficit, with the formation of root suberization/lignification and large cortical aerenchyma. Genome‐wide association study implicated 11 QTL intervals in the architectural and anatomical nodal root response to water deficit. Among them, three and four QTL intervals had strong effects across seasons and on both root architectural and anatomical traits, respectively. Genome‐wide epistasis analysis revealed 44 epistatically interacting SNP loci. Further analyses showed that these QTL intervals contain important candidate genes, including ZIFL2, MATE, and PPIB, whose functions are shown to be related to the root adaptive response to water deprivation in plants. These results give novel insight into the genetic architectures of barley nodal root response to soil water deficit stress in the fields, and thus offer useful resources for root‐targeted marker‐assisted selection.
000874228 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000874228 588__ $$aDataset connected to CrossRef
000874228 7001_ $$0P:(DE-HGF)0$$aPalczak, Janina$$b1
000874228 7001_ $$0P:(DE-Juel1)156560$$aWojciechowski, Tobias$$b2$$ufzj
000874228 7001_ $$00000-0002-7265-9790$$aLynch, Jonathan P.$$b3
000874228 7001_ $$0P:(DE-HGF)0$$aNaz, Ali A$$b4
000874228 7001_ $$0P:(DE-HGF)0$$aLéon, Jens$$b5
000874228 7001_ $$0P:(DE-HGF)0$$aBallvora, Agim$$b6$$eCorresponding author
000874228 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.13683$$gVol. 43, no. 3, p. 692 - 711$$n3$$p692 - 711$$tPlant, cell & environment$$v43$$x1365-3040$$y2020
000874228 8564_ $$uhttps://juser.fz-juelich.de/record/874228/files/Oyiga_et_al-2020-Plant%2C_Cell_%26_Environment.pdf$$yOpenAccess
000874228 8564_ $$uhttps://juser.fz-juelich.de/record/874228/files/Oyiga_et_al-2020-Plant%2C_Cell_%26_Environment.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874228 909CO $$ooai:juser.fz-juelich.de:874228$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156560$$aForschungszentrum Jülich$$b2$$kFZJ
000874228 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000874228 9141_ $$y2020
000874228 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874228 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000874228 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874228 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874228 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2017
000874228 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2017
000874228 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874228 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874228 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874228 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874228 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874228 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000874228 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874228 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874228 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874228 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874228 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874228 920__ $$lyes
000874228 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000874228 980__ $$ajournal
000874228 980__ $$aVDB
000874228 980__ $$aUNRESTRICTED
000874228 980__ $$aI:(DE-Juel1)IBG-2-20101118
000874228 9801_ $$aFullTexts