001     874228
005     20210130004632.0
024 7 _ |a 10.1111/pce.13683
|2 doi
024 7 _ |a 0140-7791
|2 ISSN
024 7 _ |a 1365-3040
|2 ISSN
024 7 _ |a 2128/24425
|2 Handle
024 7 _ |a altmetric:70706067
|2 altmetric
024 7 _ |a pmid:31734943
|2 pmid
024 7 _ |a WOS:000504815500001
|2 WOS
037 _ _ |a FZJ-2020-01320
082 _ _ |a 580
100 1 _ |a Oyiga, Benedict C.
|0 0000-0001-5547-2572
|b 0
245 _ _ |a Genetic components of root architecture and anatomy adjustments to water‐deficit stress in spring barley
260 _ _ |a Oxford [u.a.]
|c 2020
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582894646_8402
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Roots perform vital roles for adaptation and productivity under water‐deficit stress, even though their specific functions are poorly understood. In this study, the genetic control of the nodal‐root architectural and anatomical response to water deficit were investigated among diverse spring barley accessions. Water deficit induced substantial variations in the nodal root traits. The cortical, stele, and total root cross‐sectional areas of the main‐shoot nodal roots decreased under water deficit, but increased in the tiller nodal roots. Root xylem density and arrested nodal roots increased under water deficit, with the formation of root suberization/lignification and large cortical aerenchyma. Genome‐wide association study implicated 11 QTL intervals in the architectural and anatomical nodal root response to water deficit. Among them, three and four QTL intervals had strong effects across seasons and on both root architectural and anatomical traits, respectively. Genome‐wide epistasis analysis revealed 44 epistatically interacting SNP loci. Further analyses showed that these QTL intervals contain important candidate genes, including ZIFL2, MATE, and PPIB, whose functions are shown to be related to the root adaptive response to water deprivation in plants. These results give novel insight into the genetic architectures of barley nodal root response to soil water deficit stress in the fields, and thus offer useful resources for root‐targeted marker‐assisted selection.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Palczak, Janina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wojciechowski, Tobias
|0 P:(DE-Juel1)156560
|b 2
|u fzj
700 1 _ |a Lynch, Jonathan P.
|0 0000-0002-7265-9790
|b 3
700 1 _ |a Naz, Ali A
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Léon, Jens
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ballvora, Agim
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1111/pce.13683
|g Vol. 43, no. 3, p. 692 - 711
|0 PERI:(DE-600)2020843-1
|n 3
|p 692 - 711
|t Plant, cell & environment
|v 43
|y 2020
|x 1365-3040
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874228/files/Oyiga_et_al-2020-Plant%2C_Cell_%26_Environment.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874228/files/Oyiga_et_al-2020-Plant%2C_Cell_%26_Environment.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874228
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156560
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT CELL ENVIRON : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT CELL ENVIRON : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21