| Home > Publications database > Genetic components of root architecture and anatomy adjustments to water‐deficit stress in spring barley > print |
| 001 | 874228 | ||
| 005 | 20210130004632.0 | ||
| 024 | 7 | _ | |a 10.1111/pce.13683 |2 doi |
| 024 | 7 | _ | |a 0140-7791 |2 ISSN |
| 024 | 7 | _ | |a 1365-3040 |2 ISSN |
| 024 | 7 | _ | |a 2128/24425 |2 Handle |
| 024 | 7 | _ | |a altmetric:70706067 |2 altmetric |
| 024 | 7 | _ | |a pmid:31734943 |2 pmid |
| 024 | 7 | _ | |a WOS:000504815500001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-01320 |
| 082 | _ | _ | |a 580 |
| 100 | 1 | _ | |a Oyiga, Benedict C. |0 0000-0001-5547-2572 |b 0 |
| 245 | _ | _ | |a Genetic components of root architecture and anatomy adjustments to water‐deficit stress in spring barley |
| 260 | _ | _ | |a Oxford [u.a.] |c 2020 |b Wiley-Blackwell |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1582894646_8402 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Roots perform vital roles for adaptation and productivity under water‐deficit stress, even though their specific functions are poorly understood. In this study, the genetic control of the nodal‐root architectural and anatomical response to water deficit were investigated among diverse spring barley accessions. Water deficit induced substantial variations in the nodal root traits. The cortical, stele, and total root cross‐sectional areas of the main‐shoot nodal roots decreased under water deficit, but increased in the tiller nodal roots. Root xylem density and arrested nodal roots increased under water deficit, with the formation of root suberization/lignification and large cortical aerenchyma. Genome‐wide association study implicated 11 QTL intervals in the architectural and anatomical nodal root response to water deficit. Among them, three and four QTL intervals had strong effects across seasons and on both root architectural and anatomical traits, respectively. Genome‐wide epistasis analysis revealed 44 epistatically interacting SNP loci. Further analyses showed that these QTL intervals contain important candidate genes, including ZIFL2, MATE, and PPIB, whose functions are shown to be related to the root adaptive response to water deprivation in plants. These results give novel insight into the genetic architectures of barley nodal root response to soil water deficit stress in the fields, and thus offer useful resources for root‐targeted marker‐assisted selection. |
| 536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Palczak, Janina |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Wojciechowski, Tobias |0 P:(DE-Juel1)156560 |b 2 |u fzj |
| 700 | 1 | _ | |a Lynch, Jonathan P. |0 0000-0002-7265-9790 |b 3 |
| 700 | 1 | _ | |a Naz, Ali A |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Léon, Jens |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Ballvora, Agim |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
| 773 | _ | _ | |a 10.1111/pce.13683 |g Vol. 43, no. 3, p. 692 - 711 |0 PERI:(DE-600)2020843-1 |n 3 |p 692 - 711 |t Plant, cell & environment |v 43 |y 2020 |x 1365-3040 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/874228/files/Oyiga_et_al-2020-Plant%2C_Cell_%26_Environment.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/874228/files/Oyiga_et_al-2020-Plant%2C_Cell_%26_Environment.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:874228 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)156560 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT CELL ENVIRON : 2017 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLANT CELL ENVIRON : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|