Advanced plasticity rules in NEST

Clopath and Urbanczik-Senn plasticity
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Learning rules Reproduction of results

e Spike-timing dependent plasticity (STDP) is a form of Hebbian plasticity that relies on exact Clopath rule
spike times of pre- and postsynaptic neurons

—synapse requires history of spikes s (events)

—suitable for event-based synapse updates
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e Experimental evidence [1] and functional motivations [2] ask for plasticity features beyond STDP
that rely on postsynaptic membrane potential

normalized weight (%) @
N
o1

—synapse requires history of spikes s (events)
and postsynaptic membrane potential V; (continuous signal)

o . . Fig. 3: A Setups of two experiments that use the Clopath synapse. Spike pairing experiment (top) and small network driven by external
— a priori demands for time-driven Synapse€ UPdateS input (bottom, adapted from [1]). B Normalized weight in spike pairing experiments with AdEx neurons (solid lines) and Hodgkin-Huxkey

neurons (dashed liness) for ¢7 -tk . = +10ms (blue) and tF -tk = -10ms (green). Corresponds to figure 2b in [1]. C Emergence of

e Here, show how to embed such third-factor plasticity rules in event-driven synapse update scheme . . | . . .
strong bidirectional couplings between neurons of the excitatory population. Corresponds to figure 5 in [1].

in NEST
General update rule for synaptic weights: Urbanczik-Senn rule
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e Somatic input: firing deviates from dendritic prediction
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e Postsynaptic neuron: storage buffer for N send() o8 - 1'2tin§2'4[15] 20 =08 time [s]
time trace of membrane pOtentlaI e ws " Fig. 4. A Simple learning task using the Urbanczik-Senn plasticity rule. Membrane potential of the soma U (dark blue) and the dendrite

° Synapse: access to membrane potential at Viv (light blue). The red curve denotes the nudging potential Uy, resulting from somatic input (panel B). B Excitatory (ggz) and inhibitory

i ) ) . somatic conductances that produce the teaching sighal. Corresponds to figure 1b in [2]. C Temporal evolution of the synaptic weights
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e Different summation schemes:

1) separate summation for each synapse

(Fig. 2A) W Scali ng

2) summation carried out once and result : t A R
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e Current status: :

0 t
—Clopath rule available in NEST 2.18.0 Fig. 2:. Two different implemer?tations of the event—drive.n upda.lte Nvyp Nvp
scheme in NEST. Two presynaptic neurons (pre; ;) send spike trains

Fig. 5: Comparison of simulation times for the simulation of a Brunel network [3] with i) stdp synapses (red circles) and ii) Clopath synapses

— Pull request with Urbanczik-Senn rule (s1/2) to a postsy.napt.ic neuron.(post). The synaptic weight.s (wiy2) (panel A, green cricles) or Urbanczik-Senn synapses (panel B, green circles), respectively. Gray circles denote the difference in runtime
under review depend on th.e spike times (vertical bars). and the postsynaptic mem- between the two simulations. Since the simulation with the Urbanczik-Senn synapses takes much longer than that with the stdp synapse,
brane potential (V_m,post)- In A the We_'ght change _Of d synapse 15 the latter is not shown but only the difference. The figure shows results for a weak scaling on JURECA with fixed indegree K = 5000. The
computed when this synapse sends a spike, whereas in B the weight black triangles indicate the number of neurons NN in the simulations.
change for all synapses is computed whenever there is an incoming
spike at the postsynaptic neuron. e Simulations with the Clopath synapse show the same scaling behavior as simulations with stdp
SYNapses

Outlook

e [he additional computations result in a constant overhead in a weak scaling scenario

e Build times for the network are identical compared to stdp (not shown)
e Discuss how the combinatorial explosion caused by the combinations of neuron and synapse

models can be avoided using NESTML

e Use infrastructure to implement biologically plausible approximations to back-propagation
through time

e Scaling behavior of the Urbanczik synapse is similar (note the linear scale on the y-axis) but
simulation time much longer due to large, consecutive buffers

e Backward summation (see Fig. 2B) is advantageous if spikes are exchanged in strict temporal

order
— Network of few-compartment cells [4]
— E-prop algorithm [5] for recurrent networks of spiking neurons
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