Advanced plasticity rules in NEST Clopath and Urbanczik-Senn plasticity

Jonas Stapmanns^{1,2}, Jan Hahne³, David Dahmen¹, Moritz Helias^{1,2}, Matthias Bolten³, Markus Diesmann^{1,4,5}

Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany

² Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany

³ School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany

¹ Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain

⁴ Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen,

BERGISCHE

Sketch adapted from [2].

⁵ Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

Contact: j.stapmanns@fz-juelich.de

Learning rules

Germany

- Spike-timing dependent plasticity (STDP) is a form of Hebbian plasticity that relies on exact spike times of pre- and postsynaptic neurons
- —synapse requires history of spikes s (events)
- suitable for event-based synapse updates
- Experimental evidence [1] and functional motivations [2] ask for plasticity features beyond STDP that rely on postsynaptic membrane potential
- —synapse requires history of spikes s (events)
- and postsynaptic membrane potential V_i (continuous signal)
- a priori demands for time-driven synapse updates
- Here, show how to embed such third-factor plasticity rules in event-driven synapse update scheme in **NEST**

General update rule for synaptic weights:

$$\frac{dW_{ji}}{dt} = F[s_i, s_j, V_j]$$

Functional F depends on pre- (i) and postsynaptic (j) spikes and postsynaptic membrane potential.

Clopath rule:

$$F[s_i, s_j, V_j] = -A_- s_i (\kappa_- * V_j - \theta_-)_+ + A_+ K * s_i (\kappa_+ * V_j - \theta_-)_+ (V_j - \theta_+)_+$$

with exponential filter kernels κ_+, κ_- and K.

Urbanczik-Senn rule:

 $F[s_i, s_j, V_j] = \eta \kappa * \left((s_j - \phi(V_j)) h(V_j) K * s_i \right)$

presynaptic postsynaptic time time

with exponential filter kernels κ and K and nonlinearities ϕ, h .

Implementation in NEST

- Postsynaptic neuron: storage buffer for time trace of membrane potential
- Synapse: access to membrane potential at time points of spike delivery
- Different summation schemes:
- 1) separate summation for each synapse (Fig. 2A)
- 2) summation carried out once and result used for all synapses
- 'backward summation") (Fig. 2B)
- backward summation scheme potentially faster for expensive summations
- backward summation requires strictly chronological processing of spikes → in NEST only possible if delay equal to resolution of simulation
- Current status:
- Clopath rule available in NEST 2.18.0
- Pull request with Urbanczik-Senn rule under review

scheme in NEST. Two presynaptic neurons ($pre_{1/2}$) send spike trains depend on the spike times (vertical bars) and the postsynaptic membrane potential $(V_{m,post})$. In **A** the weight change of a synapse is change for all synapses is computed whenever there is an incoming spike at the postsynaptic neuron.

Fig. 2: Two different implementations of the event-driven update $(s_{1/2})$ to a postsynaptic neuron (post). The synaptic weights $(w_{1/2})$ computed when this synapse sends a spike, whereas in **B** the weight

Outlook

- Discuss how the combinatorial explosion caused by the combinations of neuron and synapse models can be avoided using NESTML
- Use infrastructure to implement biologically plausible approximations to back-propagation through time
- Network of few-compartment cells [4]
- *E-prop* algorithm [5] for recurrent networks of spiking neurons

Reproduction of results

Clopath rule

Fig. 3: A Setups of two experiments that use the Clopath synapse. Spike pairing experiment (top) and small network driven by external input (bottom, adapted from [1]). B Normalized weight in spike pairing experiments with AdEx neurons (solid lines) and Hodgkin-Huxkey neurons (dashed liness) for $t_{\text{post}}^k - t_{\text{pre}}^k = +10 \,\text{ms}$ (blue) and $t_{\text{post}}^k - t_{\text{pre}}^k = -10 \,\text{ms}$ (green). Corresponds to figure 2b in [1]. **C** Emergence of strong bidirectional couplings between neurons of the excitatory population. Corresponds to figure 5 in [1].

Urbanczik-Senn rule

Plasticity of dendritic synapses w_i :

- Aim: prediction of somatic firing ('evidence') from dendritic membrane potential ('expectation')
- No somatic input: trivial prediction
- Somatic input: firing deviates from dendritic prediction
- → Adjust dendritic weights to minimize error

Fig. 4: A Simple learning task using the Urbanczik-Senn plasticity rule. Membrane potential of the soma U (dark blue) and the dendrite V_W (light blue). The red curve denotes the nudging potential U_M resulting from somatic input (panel B). **B** Excitatory (g_E) and inhibitory (g_I) somatic conductances that produce the teaching signal. Corresponds to figure 1b in [2]. C Temporal evolution of the synaptic weights during learning.

Scaling

Fig. 5: Comparison of simulation times for the simulation of a Brunel network [3] with i) stdp synapses (red circles) and ii) Clopath synapses (panel \mathbf{A} , green cricles) or Urbanczik-Senn synapses (panel \mathbf{B} , green circles), respectively. Gray circles denote the difference in runtime between the two simulations. Since the simulation with the Urbanczik-Senn synapses takes much longer than that with the stdp synapse the latter is not shown but only the difference. The figure shows results for a weak scaling on JURECA with fixed indegree K = 5000. The black triangles indicate the number of neurons N in the simulations.

- Simulations with the Clopath synapse show the same scaling behavior as simulations with stdp synapses
- The additional computations result in a constant overhead in a weak scaling scenario
- Build times for the network are identical compared to stdp (not shown)
- Scaling behavior of the Urbanczik synapse is similar (note the linear scale on the y-axis) but simulation time much longer due to large, consecutive buffers
- Backward summation (see Fig. 2B) is advantageous if spikes are exchanged in strict temporal order

References

- [1] C. Clopath, L. Büsing, E. Vasilaki, W. Gersnter (2010): Learning by the Dendritic Prediction of Somatic
- Spiking. Neuron, 81, 521 528 [2] R. Urbanczik, W. Senn (2014): Learning by the Dendritic Prediction of Somatic Spiking. Neuron, 81, 521
- J. Comput. Neurosci. 8, 183–208.

Science (SSD); the Helmholtz association: Young investigator's grant VH-NG-1028; European Union's Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2); Juelich Aachen Research Alliance (JARA).

- [3] N. Brunel (2000): Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
 - G. Bellec, F. Scherr, E. Hajek, D. Salaj, R. Legenstein, W. Maass (2019): Biologically Inspired Alternatives to Backpropagation Through Time for Learning in Recurrent Neural Nets. arxiv:1901.09049v2
- [4] J. Sacramento, R. P. Costa, Y. Bengio, W. Senn (2017): Dendritic Error Backpropagation in Deep Cortical Microcircuits. arxiv:1801.00062v1
- Acknowledgments: This work was partly supported by the Exploratory Research Space seed funds MSCALE and G:(DE-82)ZUK2-SF-CLS002 (partly financed by Hans Herrmann Voss Stiftung) of the RWTH university; the Jülich-Aachen Research Alliance Center for Simulation and Data Science (JARA-CSD) School for Simulation and Data