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Learning rules

• Spike-timing dependent plasticity (STDP) is a form of Hebbian plasticity that relies on exact
spike times of pre- and postsynaptic neurons

– synapse requires history of spikes s (events)

– suitable for event-based synapse updates

• Experimental evidence [1] and functional motivations [2] ask for plasticity features beyond STDP
that rely on postsynaptic membrane potential

– synapse requires history of spikes s (events)
and postsynaptic membrane potential Vj (continuous signal)

– a priori demands for time-driven synapse updates

•Here, show how to embed such third-factor plasticity rules in event-driven synapse update scheme
in NEST

General update rule for synaptic weights:

dWji

dt
= F [si, sj, Vj]

Functional F depends on pre- (i) and postsynap-
tic (j) spikes and postsynaptic membrane potential.

Clopath rule:

F [si, sj, Vj] = −A− si (κ− ∗ Vj − θ−)+
+A+ K ∗ si (κ+ ∗ Vj − θ−)+(Vj − θ+)+

with exponential filter kernels κ+, κ− and K.

Urbanczik-Senn rule:

F [si, sj, Vj] =η κ ∗ ((sj − φ(Vj))h(Vj)K ∗ si)
with exponential filter kernels κ and K and nonlinearities φ,h.

Implementation in NEST

•Postsynaptic neuron: storage buffer for
time trace of membrane potential

• Synapse: access to membrane potential at
time points of spike delivery

•Different summation schemes:

1) separate summation for each synapse
(Fig. 2A)

2) summation carried out once and result
used for all synapses
(”backward summation”) (Fig. 2B)

– backward summation scheme poten-
tially faster for expensive summations

– backward summation requires strictly
chronological processing of spikes
→ in NEST only possible if delay equal
to resolution of simulation

•Current status:

–Clopath rule available in NEST 2.18.0

–Pull request with Urbanczik-Senn rule
under review
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Fig. 2: Two different implementations of the event-driven update

scheme in NEST. Two presynaptic neurons (pre1/2) send spike trains

(s1/2) to a postsynaptic neuron (post). The synaptic weights (w1/2)

depend on the spike times (vertical bars) and the postsynaptic mem-

brane potential (Vm,post). In A the weight change of a synapse is

computed when this synapse sends a spike, whereas in B the weight

change for all synapses is computed whenever there is an incoming

spike at the postsynaptic neuron.

Reproduction of results

Clopath rule
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Fig. 3: A Setups of two experiments that use the Clopath synapse. Spike pairing experiment (top) and small network driven by external

input (bottom, adapted from [1]). B Normalized weight in spike pairing experiments with AdEx neurons (solid lines) and Hodgkin-Huxkey

neurons (dashed liness) for tkpost − t
k
pre = +10ms (blue) and tkpost − t

k
pre = −10ms (green). Corresponds to figure 2b in [1]. C Emergence of

strong bidirectional couplings between neurons of the excitatory population. Corresponds to figure 5 in [1].

Urbanczik-Senn rule

Plasticity of dendritic synapses wi:

•Aim: prediction of somatic firing (’evidence’) from
dendritic membrane potential (’expectation’)

•No somatic input: trivial prediction

• Somatic input: firing deviates from dendritic prediction

→Adjust dendritic weights to minimize error

Sketch adapted from [2].
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Fig. 4: A Simple learning task using the Urbanczik-Senn plasticity rule. Membrane potential of the soma U (dark blue) and the dendrite

VW (light blue). The red curve denotes the nudging potential UM resulting from somatic input (panel B). B Excitatory (gE) and inhibitory

(gI) somatic conductances that produce the teaching signal. Corresponds to figure 1b in [2]. C Temporal evolution of the synaptic weights

during learning.

Scaling
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Fig. 5: Comparison of simulation times for the simulation of a Brunel network [3] with i) stdp synapses (red circles) and ii) Clopath synapses

(panel A, green cricles) or Urbanczik-Senn synapses (panel B, green circles), respectively. Gray circles denote the difference in runtime

between the two simulations. Since the simulation with the Urbanczik-Senn synapses takes much longer than that with the stdp synapse,

the latter is not shown but only the difference. The figure shows results for a weak scaling on JURECA with fixed indegree K = 5000. The

black triangles indicate the number of neurons N in the simulations.

• Simulations with the Clopath synapse show the same scaling behavior as simulations with stdp
synapses

•The additional computations result in a constant overhead in a weak scaling scenario

•Build times for the network are identical compared to stdp (not shown)

• Scaling behavior of the Urbanczik synapse is similar (note the linear scale on the y-axis) but
simulation time much longer due to large, consecutive buffers

•Backward summation (see Fig. 2B) is advantageous if spikes are exchanged in strict temporal
order

Outlook

•Discuss how the combinatorial explosion caused by the combinations of neuron and synapse
models can be avoided using NESTML

•Use infrastructure to implement biologically plausible approximations to back-propagation
through time

–Network of few-compartment cells [4]

– E-prop algorithm [5] for recurrent networks of spiking neurons
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[1] C. Clopath, L. Büsing, E. Vasilaki, W. Gersnter (2010): Learning by the Dendritic Prediction of Somatic

Spiking. Neuron, 81, 521 - 528

[2] R. Urbanczik, W. Senn (2014): Learning by the Dendritic Prediction of Somatic Spiking. Neuron, 81, 521
- 528

[3] N. Brunel (2000): Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
J. Comput. Neurosci. 8, 183–208.

[4] J. Sacramento, R. P. Costa, Y. Bengio, W. Senn (2017): Dendritic Error Backpropagation in Deep Cortical
Microcircuits. arxiv:1801.00062v1

[5] G. Bellec, F. Scherr, E. Hajek, D. Salaj, R. Legenstein, W. Maass (2019): Biologically Inspired Alternatives
to Backpropagation Through Time for Learning in Recurrent Neural Nets. arxiv:1901.09049v2

Acknowledgments: This work was partly supported by the Exploratory Research Space seed funds MSCALE and G:(DE-82)ZUK2-SF-CLS002 (partly financed by Hans Herrmann Voss Stiftung) of the RWTH university; the Jülich-Aachen Research Alliance Center for Simulation and Data Science (JARA-CSD) School for Simulation and Data
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