000874242 001__ 874242
000874242 005__ 20210130004635.0
000874242 0247_ $$2doi$$a10.3390/w12020550
000874242 0247_ $$2Handle$$a2128/24431
000874242 0247_ $$2WOS$$aWOS:000519846500241
000874242 037__ $$aFZJ-2020-01333
000874242 082__ $$a690
000874242 1001_ $$0P:(DE-Juel1)129554$$aWendland, Frank$$b0$$eCorresponding author
000874242 245__ $$aModel-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany
000874242 260__ $$aBasel$$bMDPI$$c2020
000874242 3367_ $$2DRIVER$$aarticle
000874242 3367_ $$2DataCite$$aOutput Types/Journal article
000874242 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583143567_31665
000874242 3367_ $$2BibTeX$$aARTICLE
000874242 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874242 3367_ $$00$$2EndNote$$aJournal Article
000874242 520__ $$aReaching the EU quality standard for nitrate (50 mg NO3/L) in all groundwater bodies is a challenge in the Federal State of North Rhine-Westfalia (Germany). In the research project GROWA+ NRW 2021 initiated by the Federal States’ Ministry for Environment, Agriculture, Nature and Consumer Protection, amongst other aspects, a model-based analysis of agricultural nitrogen inputs into groundwater and nitrate concentration in the leachate was carried out. For this purpose, the water balance model mGROWA, the agro-economic model RAUMIS, and the reactive N transport model DENUZ were coupled and applied consistently across the whole territory of North Rhine-Westfalia with a spatial resolution of 100 m × 100 m. Besides agricultural N emissions, N emissions from small sewage plants, urban systems, and NOx deposition were also included in the model analysis. The comparisons of the modelled nitrate concentrations in the leachate of different land use influences with observed nitrate concentrations in groundwater were shown to have a good correspondence with regard to the concentration levels across all regions and different land-uses in North Rhine-Westphalia. On the level of ground water bodies (according to EU ground water directive) N emissions exclusively from agriculture led to failure of the good chemical state. This result will support the selection and the adequate dimensioning of regionally adapted agricultural N reduction measures
000874242 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000874242 588__ $$aDataset connected to CrossRef
000874242 7001_ $$0P:(DE-HGF)0$$aBergmann, Sabine$$b1
000874242 7001_ $$0P:(DE-HGF)0$$aEisele, Michael$$b2
000874242 7001_ $$0P:(DE-HGF)0$$aGömann, Horst$$b3
000874242 7001_ $$0P:(DE-Juel1)141774$$aHerrmann, Frank$$b4
000874242 7001_ $$0P:(DE-HGF)0$$aKreins, Peter$$b5
000874242 7001_ $$0P:(DE-Juel1)129489$$aKunkel, Ralf$$b6
000874242 773__ $$0PERI:(DE-600)2521238-2$$a10.3390/w12020550$$gVol. 12, no. 2, p. 550 -$$n2$$p550 -$$tWater$$v12$$x2073-4441$$y2020
000874242 8564_ $$uhttps://juser.fz-juelich.de/record/874242/files/water-12-00550.pdf$$yOpenAccess
000874242 8564_ $$uhttps://juser.fz-juelich.de/record/874242/files/water-12-00550.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874242 909CO $$ooai:juser.fz-juelich.de:874242$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000874242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129554$$aForschungszentrum Jülich$$b0$$kFZJ
000874242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141774$$aForschungszentrum Jülich$$b4$$kFZJ
000874242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129489$$aForschungszentrum Jülich$$b6$$kFZJ
000874242 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000874242 9141_ $$y2020
000874242 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874242 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874242 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER-SUI : 2017
000874242 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874242 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874242 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874242 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874242 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874242 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874242 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000874242 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000874242 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874242 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874242 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000874242 980__ $$ajournal
000874242 980__ $$aVDB
000874242 980__ $$aUNRESTRICTED
000874242 980__ $$aI:(DE-Juel1)IBG-3-20101118
000874242 9801_ $$aFullTexts