000874247 001__ 874247
000874247 005__ 20220930130231.0
000874247 0247_ $$2doi$$a10.1016/j.jsb.2020.107480
000874247 0247_ $$2ISSN$$a1047-8477
000874247 0247_ $$2ISSN$$a1095-8657
000874247 0247_ $$2Handle$$a2128/24677
000874247 0247_ $$2altmetric$$aaltmetric:76384827
000874247 0247_ $$2pmid$$apmid:32070773
000874247 0247_ $$2WOS$$aWOS:000527725100009
000874247 037__ $$aFZJ-2020-01338
000874247 082__ $$a540
000874247 1001_ $$00000-0001-8488-3784$$aRosenbach, Hannah$$b0
000874247 245__ $$aExpanding crystallization tools for nucleic acid complexes using U1A protein variants
000874247 260__ $$aSan Diego, Calif.$$bElsevier$$c2020
000874247 3367_ $$2DRIVER$$aarticle
000874247 3367_ $$2DataCite$$aOutput Types/Journal article
000874247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1587114836_30676
000874247 3367_ $$2BibTeX$$aARTICLE
000874247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874247 3367_ $$00$$2EndNote$$aJournal Article
000874247 520__ $$aThe major bottlenecks in structure elucidation of nucleic acids are crystallization and phasing. Co-crystallization with proteins is a straight forward approach to overcome these challenges. The human RNA-binding protein U1A has previously been established as crystallization module, however, the absence of UV-active residues and the predetermined architecture in the asymmetric unit constitute clear limitations of the U1A system. Here, we report three crystal structures of tryptophan-containing U1A variants, which expand the crystallization toolbox for nucleic acids. Analysis of the structures complemented by SAXS, NMR spectroscopy, and optical spectroscopy allow for insights into the potential of the U1A variants to serve as crystallization modules for nucleic acids. In addition, we report a fast and efficient protocol for crystallization of RNA by soaking and present a fluorescence-based approach for detecting RNA-binding in crystallo. Our results provide a new tool set for the crystallization of RNA and RNA:DNA complexes.
000874247 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000874247 588__ $$aDataset connected to CrossRef
000874247 7001_ $$0P:(DE-Juel1)176160$$aVictor, Julian$$b1
000874247 7001_ $$0P:(DE-Juel1)168267$$aBorggräfe, Jan$$b2
000874247 7001_ $$0P:(DE-Juel1)130542$$aBiehl, Ralf$$b3$$ufzj
000874247 7001_ $$0P:(DE-HGF)0$$aSteger, Gerhard$$b4
000874247 7001_ $$0P:(DE-Juel1)156341$$aEtzkorn, Manuel$$b5$$ufzj
000874247 7001_ $$00000-0002-2892-4825$$aSpan, Ingrid$$b6$$eCorresponding author
000874247 773__ $$0PERI:(DE-600)1469822-5$$a10.1016/j.jsb.2020.107480$$gp. 107480 -$$n2$$p107480 -$$tJournal of structural biology$$v210$$x1047-8477$$y2020
000874247 8564_ $$uhttps://juser.fz-juelich.de/record/874247/files/Invoice_OAD0000033875.pdf
000874247 8564_ $$uhttps://juser.fz-juelich.de/record/874247/files/1-s2.0-S1047847720300435-main.pdf$$yOpenAccess
000874247 8564_ $$uhttps://juser.fz-juelich.de/record/874247/files/Invoice_OAD0000033875.pdf?subformat=pdfa$$xpdfa
000874247 8564_ $$uhttps://juser.fz-juelich.de/record/874247/files/1-s2.0-S1047847720300435-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874247 8767_ $$8OAD0000033875$$92020-02-26$$d2020-03-04$$eHybrid-OA$$jZahlung erfolgt
000874247 909CO $$ooai:juser.fz-juelich.de:874247$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000874247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874247 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000874247 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874247 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000874247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STRUCT BIOL : 2017
000874247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874247 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874247 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874247 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874247 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874247 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874247 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874247 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874247 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874247 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874247 9141_ $$y2020
000874247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168267$$aForschungszentrum Jülich$$b2$$kFZJ
000874247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130542$$aForschungszentrum Jülich$$b3$$kFZJ
000874247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156341$$aForschungszentrum Jülich$$b5$$kFZJ
000874247 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000874247 920__ $$lyes
000874247 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000874247 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000874247 980__ $$ajournal
000874247 980__ $$aVDB
000874247 980__ $$aUNRESTRICTED
000874247 980__ $$aI:(DE-Juel1)ICS-6-20110106
000874247 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000874247 980__ $$aAPC
000874247 9801_ $$aAPC
000874247 9801_ $$aFullTexts
000874247 981__ $$aI:(DE-Juel1)IBI-7-20200312