001     874247
005     20220930130231.0
024 7 _ |2 doi
|a 10.1016/j.jsb.2020.107480
024 7 _ |2 ISSN
|a 1047-8477
024 7 _ |2 ISSN
|a 1095-8657
024 7 _ |2 Handle
|a 2128/24677
024 7 _ |2 altmetric
|a altmetric:76384827
024 7 _ |2 pmid
|a pmid:32070773
024 7 _ |2 WOS
|a WOS:000527725100009
037 _ _ |a FZJ-2020-01338
082 _ _ |a 540
100 1 _ |0 0000-0001-8488-3784
|a Rosenbach, Hannah
|b 0
245 _ _ |a Expanding crystallization tools for nucleic acid complexes using U1A protein variants
260 _ _ |a San Diego, Calif.
|b Elsevier
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1587114836_30676
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The major bottlenecks in structure elucidation of nucleic acids are crystallization and phasing. Co-crystallization with proteins is a straight forward approach to overcome these challenges. The human RNA-binding protein U1A has previously been established as crystallization module, however, the absence of UV-active residues and the predetermined architecture in the asymmetric unit constitute clear limitations of the U1A system. Here, we report three crystal structures of tryptophan-containing U1A variants, which expand the crystallization toolbox for nucleic acids. Analysis of the structures complemented by SAXS, NMR spectroscopy, and optical spectroscopy allow for insights into the potential of the U1A variants to serve as crystallization modules for nucleic acids. In addition, we report a fast and efficient protocol for crystallization of RNA by soaking and present a fluorescence-based approach for detecting RNA-binding in crystallo. Our results provide a new tool set for the crystallization of RNA and RNA:DNA complexes.
536 _ _ |0 G:(DE-HGF)POF3-552
|a 552 - Engineering Cell Function (POF3-552)
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)176160
|a Victor, Julian
|b 1
700 1 _ |0 P:(DE-Juel1)168267
|a Borggräfe, Jan
|b 2
700 1 _ |0 P:(DE-Juel1)130542
|a Biehl, Ralf
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Steger, Gerhard
|b 4
700 1 _ |0 P:(DE-Juel1)156341
|a Etzkorn, Manuel
|b 5
|u fzj
700 1 _ |0 0000-0002-2892-4825
|a Span, Ingrid
|b 6
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1469822-5
|a 10.1016/j.jsb.2020.107480
|g p. 107480 -
|n 2
|p 107480 -
|t Journal of structural biology
|v 210
|x 1047-8477
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/874247/files/Invoice_OAD0000033875.pdf
856 4 _ |u https://juser.fz-juelich.de/record/874247/files/1-s2.0-S1047847720300435-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/874247/files/Invoice_OAD0000033875.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/874247/files/1-s2.0-S1047847720300435-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:874247
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168267
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130542
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156341
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-552
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J STRUCT BIOL : 2017
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21