TY  - JOUR
AU  - Emmerich, Thomas
AU  - Vaßen, Robert
AU  - Aktaa, Jarir
TI  - Thermal fatigue behavior of functionally graded W/EUROFER-layer systems using a new test apparatus
JO  - Fusion engineering and design
VL  - 154
SN  - 0920-3796
CY  - New York, NY [u.a.]
PB  - Elsevier
M1  - FZJ-2020-01342
SP  - 111550 -
PY  - 2020
AB  - In future fusion reactors tungsten coatings shall protect First Wall components, made of reduced activation ferritic martensitic steel, against the plasma, because of tungsten’s favourable thermo-mechanical properties and low sputtering yield. Functionally graded material layers implemented between the coating and the steel substrate, compensate the difference in the coefficient of thermal expansion. By using the vacuum plasma spraying technique several layer systems were successfully produced and tested, among other aspects, in regard to their thermal fatigue behaviour up to 500 thermal cycles in a vacuum furnace. However, higher numbers of thermal cycles are anticipated for future fusion reactors and, therefore, a less time consuming approach for thermal fatigue testing is required.Hence, a new testing apparatus with induction heating and inert gas cooling was built and first thermal fatigue experiments with up to 5000 cycles were carried out on different functionally graded tungsten/steel layers systems. The subsequent investigations of these samples show that the layer systems are stable for the applied number of thermal cycles and their properties are solely determined during their respective coating processes.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000530644300003
DO  - DOI:10.1016/j.fusengdes.2020.111550
UR  - https://juser.fz-juelich.de/record/874251
ER  -