| Home > Publications database > Structural and dynamic insights revealing how lipase binding domain MD1 of Pseudomonas aeruginosa foldase affects lipase activation > print |
| 001 | 874256 | ||
| 005 | 20220930130231.0 | ||
| 024 | 7 | _ | |a 10.1038/s41598-020-60093-4 |2 doi |
| 024 | 7 | _ | |a 2128/24436 |2 Handle |
| 024 | 7 | _ | |a altmetric:76748093 |2 altmetric |
| 024 | 7 | _ | |a pmid:32107397 |2 pmid |
| 024 | 7 | _ | |a WOS:000563068600012 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-01347 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Viegas, Aldino |0 P:(DE-Juel1)161140 |b 0 |
| 245 | _ | _ | |a Structural and dynamic insights revealing how lipase binding domain MD1 of Pseudomonas aeruginosa foldase affects lipase activation |
| 260 | _ | _ | |a [London] |c 2020 |b Macmillan Publishers Limited, part of Springer Nature |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1610982803_8202 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Folding and cellular localization of many proteins of Gram-negative bacteria rely on a network of chaperones and secretion systems. Among them is the lipase-specific foldase Lif, a membrane-bound steric chaperone that tightly binds (KD = 29 nM) and mediates folding of the lipase LipA, a virulence factor of the pathogenic bacterium P. aeruginosa. Lif consists of five-domains, including a mini domain MD1 essential for LipA folding. However, the molecular mechanism of Lif-assisted LipA folding remains elusive. Here, we show in in vitro experiments using a soluble form of Lif (sLif) that isolated MD1 inhibits sLif-assisted LipA activation. Furthermore, the ability to activate LipA is lost in the variant sLifY99A, in which the evolutionary conserved amino acid Y99 from helix α1 of MD1 is mutated to alanine. This coincides with an approximately three-fold reduced affinity of the variant to LipA together with increased flexibility of sLifY99A in the complex as determined by polarization-resolved fluorescence spectroscopy. We have solved the NMR solution structures of P. aeruginosa MD1 and variant MD1Y99A revealing a similar fold indicating that a structural modification is likely not the reason for the impaired activity of variant sLifY99A. Molecular dynamics simulations of the sLif:LipA complex in connection with rigidity analyses suggest a long-range network of interactions spanning from Y99 of sLif to the active site of LipA, which might be essential for LipA activation. These findings provide important details about the putative mechanism for LipA activation and point to a general mechanism of protein folding by multi-domain steric chaperones. |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
| 536 | _ | _ | |a Forschergruppe Gohlke (hkf7_20170501) |0 G:(DE-Juel1)hkf7_20170501 |c hkf7_20170501 |f Forschergruppe Gohlke |x 1 |
| 536 | _ | _ | |a Conformational dynamics of the unbound lipase-specific foldase Lif (hdd16_20161101) |0 G:(DE-Juel1)hdd16_20161101 |c hdd16_20161101 |f Conformational dynamics of the unbound lipase-specific foldase Lif |x 2 |
| 536 | _ | _ | |a Analysis of the conformational changes during activation of lipase A by its foldase (hdd16_20171101) |0 G:(DE-Juel1)hdd16_20171101 |c hdd16_20171101 |f Analysis of the conformational changes during activation of lipase A by its foldase |x 3 |
| 536 | _ | _ | |a 581 - Biotechnology (POF3-581) |0 G:(DE-HGF)POF3-581 |c POF3-581 |f POF III |x 4 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Dollinger, Peter |0 P:(DE-Juel1)162232 |b 1 |
| 700 | 1 | _ | |a Verma, Neha |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Kubiak, Jakub |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Viennet, Thibault |0 P:(DE-Juel1)161253 |b 4 |
| 700 | 1 | _ | |a Seidel, Claus A. M. |0 P:(DE-Juel1)IHRS-BioSoft-20911 |b 5 |
| 700 | 1 | _ | |a Gohlke, Holger |0 P:(DE-Juel1)172663 |b 6 |e Corresponding author |
| 700 | 1 | _ | |a Etzkorn, Manuel |0 P:(DE-Juel1)156341 |b 7 |e Corresponding author |
| 700 | 1 | _ | |a Kovacic, Filip |0 P:(DE-Juel1)131480 |b 8 |
| 700 | 1 | _ | |a Jaeger, Karl-Erich |0 P:(DE-Juel1)131457 |b 9 |e Corresponding author |
| 773 | _ | _ | |a 10.1038/s41598-020-60093-4 |g Vol. 10, no. 1, p. 3578 |0 PERI:(DE-600)2615211-3 |n 1 |p 3578 |t Scientific reports |v 10 |y 2020 |x 2045-2322 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874256/files/Invoice_2676174107.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874256/files/Invoice_2676174107.pdf?subformat=pdfa |x pdfa |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874256/files/Viegas%20et%20al_SI.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874256/files/Viegas%20et%20al_manuscript-revised.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874256/files/s41598-020-60093-4.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874256/files/Viegas%20et%20al_SI.pdf?subformat=pdfa |x pdfa |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874256/files/Viegas%20et%20al_manuscript-revised.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874256/files/s41598-020-60093-4.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:874256 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-Juel1)IHRS-BioSoft-20911 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)172663 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)156341 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131480 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131457 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Computational Science and Mathematical Methods |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-581 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Biotechnology |x 1 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 2 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 3 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IMET-20090612 |k IMET |l Institut für Molekulare Enzymtechnologie (HHUD) |x 4 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
| 980 | _ | _ | |a I:(DE-Juel1)IMET-20090612 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|