000874257 001__ 874257
000874257 005__ 20240711085659.0
000874257 020__ $$a978-3-95806-457-7
000874257 0247_ $$2Handle$$a2128/24507
000874257 037__ $$aFZJ-2020-01348
000874257 041__ $$aEnglish
000874257 1001_ $$0P:(DE-Juel1)171660$$aVorkötter, Christoph$$b0$$eCorresponding author$$ufzj
000874257 245__ $$aAluminiumoxiddispersionsverstärkte Haftvermittlermaterialien in Wärmedämmschichtsystemen$$f - 2020-01-08
000874257 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000874257 300__ $$aVIII, 99, XXXIII
000874257 3367_ $$2DataCite$$aOutput Types/Dissertation
000874257 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000874257 3367_ $$2ORCID$$aDISSERTATION
000874257 3367_ $$2BibTeX$$aPHDTHESIS
000874257 3367_ $$02$$2EndNote$$aThesis
000874257 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1593157829_13095
000874257 3367_ $$2DRIVER$$adoctoralThesis
000874257 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v488
000874257 502__ $$aDissertation, Univ. Bochum, 2020$$bDissertation$$cUniv. Bochum$$d2020$$o2020-01-08
000874257 520__ $$aThermal barrier coatings typically consist of a ceramic top coat on a metallic bondcoat. Used for gas turbine parts, for example the turbine blade, these coatings can protect the blade material from the high temperatures of the combustion gasses, corrosionand oxidation. Besides enhanced top coat bonding, the bond coat ensures oxidation protection of the blade material by oxidising itself. In the present thesis thermally sprayed alumina oxide dispersion strengthened bondcoat materials were produced for the use in thermal barrier coatings. High energy milled bond coat materials were analysed with respect to the material properties and the behaviour in thermal barrier coatings, which were manufactured on single crystal superalloys with a common yttria stabilized zirconia top coat. The bond coats low porosity was achieved by low pressure plasma spraying. For the high porosity of the top coat atmospheric plasma spraying was used. The aging mechanisms of thermal barrier coatings are influenced by several factors. Main factors are stresses in the thermal barrier coating. These stresses arise from the thermal expansion coefficient missmatch between top coat, bond coat, blade material and the oxide layer thermally growing on the bond coat. Previous studies showed a high thermal cycling performance of thermal barrier coatings with double layered bond coats consisting of 2 wt.% alumina oxide dispersion strengthened bond coats on conventional bond coats compared to thermal barrier coatings with single layered conventional bond coats. The approach of this thesis is an increased alumina content up to 30 wt.% in the oxide dispersion strengthened bond coat. The result is a lower thermal expansion coefficient of the upper bond coat reducing the stresses in the thermal barrier coating, which offers a possible increase in thermal barrier coating thermal cycling performance. The approach was proved for thermal barrier coatings using 10% alumina in the oxide dispersion strengthened bond coat. As a result of the lower oxidation resistance of 30% bond coat material, a further increase to 30% alumina does not further improve the thermal cycling performance due to the lower thermal expansion coefficient. Furthermore thermal barrier coatings with columnar structured top coats combined with oxide dispersion strengthened bond coats are promising candidates for high thermal cycling performances. Wear resistant tests showed an increased wear resistance especially for 30% aluminia oxide dispersion strengthened bond coat materials. The research of the present thesis was embedded in the collaborative research center SFB/Transregio 103 “From atoms to turbine blades“ focussing on the developmentof superalloys. Correspondingly single crystal superalloys were used for the thermal barrier coatings [...]
000874257 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000874257 8564_ $$uhttps://juser.fz-juelich.de/record/874257/files/Energie_Umwelt_488.pdf$$yOpenAccess
000874257 8564_ $$uhttps://juser.fz-juelich.de/record/874257/files/Energie_Umwelt_488.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874257 909CO $$ooai:juser.fz-juelich.de:874257$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171660$$aForschungszentrum Jülich$$b0$$kFZJ
000874257 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000874257 9141_ $$y2020
000874257 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874257 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874257 920__ $$lyes
000874257 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000874257 9801_ $$aFullTexts
000874257 980__ $$aphd
000874257 980__ $$aVDB
000874257 980__ $$abook
000874257 980__ $$aI:(DE-Juel1)IEK-1-20101013
000874257 980__ $$aUNRESTRICTED
000874257 981__ $$aI:(DE-Juel1)IMD-2-20101013