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Objective: Imaging studies of major depressive disorder (MDD) have reported structural 

and functional abnormalities in many, spatially diverse brain regions. Quantitative meta-

analyses of this literature, however, have failed to find statistically significant between-

study spatial convergence, other than transdiagnostic-only effects. In the present study, 

the authors apply a novel, multi-modal, meta-analytic approach to test the hypothesis 

that MDD exhibits spatially convergent structural and functional brain abnormalities. 

Methods: This coordinate-based meta-analysis (CBMA) included voxel-based 

morphometry (VBM) studies and resting-state voxel-based pathophysiology (VBP) 

studies imaging blood flow (BF), glucose metabolism, regional homogeneity (ReHo), and 

amplitude of low frequency fluctuations (ALFF/fALFF). Input data were grouped into 

three primary meta-analytic classes: gray matter atrophy; increased function; and, 

decreased function in MDD patients relative to healthy controls. Secondary meta-

analyses grouped across primary categories. Tertiary analyses grouped by medication 

status and absence of psychiatric comorbidity. Activation likelihood estimation (ALE) was 

used for all analyses. 

Results: In total 92 publications reporting 152 experiments were identified, collectively 

representing 2,928 MDD patients. Primary analyses detected no convergence across 

studies. Secondary analyses identified portions of subgenual cingulate, hippocampus, 

amygdala, putamen, retrosplenial cortex, and middle occipital/inferior temporal gyri as 

demonstrating convergent abnormalities. Tertiary analyses (clinical subtypes) showed 

improved convergence relative to secondary analyses. 

Conclusions:  CBMA identified spatially convergent structural (VBM) and functional 

(VBP) abnormalities in MDD. Present findings suggest replicable neuroimaging features 

associated with MDD, beyond the transdiagnostic effects reported in prior meta-analysis. 
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Our findings support continued research focus on the subgenual cingulate and other 

select regions’ role in MDD. 
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Introduction 

Major depressive disorder (MDD) is the single largest contributor to disability 

worldwide, impacting as many as 300 million sufferers annually (1). Despite decades of 

basic science, clinical neuroscience, and psychiatric research, the pathophysiology of 

MDD is not well understood (2). Human neuroimaging approaches comprise powerful, 

non-invasive methods to investigate the neurobiological mechanisms underpinning 

psychiatric disorders (3,4). Neuroimaging’s promise notwithstanding, recent reports have 

challenged the reliability of this literature, drawing attention to small sample sizes (5), 

clinical heterogeneity (6), and flawed correction for multiple comparisons (7), which 

jointly work to inflate false positive rates. Though improvement of neuroimaging 

techniques is currently an active area of research, previous findings are not without 

value. Meta-analytic approaches are capable of addressing many of the methodological 

concerns that contribute to varied findings at the individual study level and allow 

identification of reliable, true-positive findings in existing literature. 

Coordinate-based meta-analysis (CBMA) is a well-established family of methods 

which hold a prominent position in neuroimaging research (8, 9). CBMA offers a large-

scale, data-driven approach to the identification of brain regions consistently altered by 

disease by testing for spatial convergence across reported findings from previously 

published neuroimaging studies. CBMA tests for convergence against the null 

hypothesis that reported findings follow a random spatial distribution across the brain, 

rather than demonstrating convergent abnormality in discrete brain regions. CBMA is 

applicable only to data acquired from the whole brain and analyzed in voxel-wise 

manner, to ensure identification of convergent effects in a spatially unbiased (non-ROI 

based) manner (8, 10). CBMA applies equally well to multiple types of imaging data 

including task activation, voxel-based morphometry (VBM; 11), and resting state voxel-
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based pathophysiology (VBP).  Activation/anatomical likelihood estimation (ALE; 10, 12-

14) — the most widely adopted CBMA method (15) — computes the union of reported 

findings based entirely on location. Unlike effect-size meta-analysis, ALE is blind to 

magnitude and sign (+/-) of effect. Though ALE has been traditionally employed in single 

modality meta-analysis, its flexibility for integration of findings across imaging methods 

allows for comprehensive assessment of disease related effects. In the present study, 

we employed CBMA/ALE to identify convergent structural (VBM) and physiological 

(VBP) disease effects of both signs (+/-).  

Several recent, large-scale meta-analyses of structural and functional imaging in 

MDD and other psychiatric disorders strongly suggest that concerns about a 

preponderance of false positives in the neuroimaging literature are well justified. Table 1 

provides an outline of the meta-analyses described in the present summary. A 

transdiagnostic meta-analysis of task-activation studies across several Axis-I disorders 

by Sprooten and colleagues (16) found shared effects across diseases, however no 

effect of diagnosis or RDoC domain on spatial distribution of reported findings. A similar 

transdiagnostic ALE meta-analysis by Goodkind and colleagues (17) assessed regional 

atrophy (VBM) patterns across 6 Axis-I disorders and did find spatial convergences in 

bilateral anterior insula and anterior cingulate when assessing across all disorders, but 

found no unique characteristics of any disorder. A transdiagnostic independent 

component analysis (ICA) meta-analysis of VBM studies Vanasse and colleagues (our 

laboratory) assessed disease loadings on several independent brain networks (18). The 

central finding from Vanasse et al was that no disease loaded on a single network, and 

no network loaded on a single disease. Furthermore, one of the component networks 

identified by Vanasse’s group closely reflected the pattern of shared pathology identified 

through Goodkind’s transdiagnostic ALE analysis of VBM data. An ALE meta-analysis of 

resting-state VBP studies across 11 neuropsychiatric disorders by Sha and colleagues 
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(19) also identified shared effects across diseases, including widespread abnormalities 

in MDD patients. However, the disease-specific distribution identified in Sha et al.’s 

analysis of MDD failed to converge at statistical thresholds recommended by ALE best-

practice guidelines (20, 21). In an ALE meta-analysis of cognitive and emotional task-

activation studies limited to MDD cohorts, Müller et al (our group; 6), no brain regions of 

significant convergence were identified. Collectively, these meta-analyses pose a 

challenge to the psychiatric neuroimaging community.  

Findings from the aforementioned transdiagnostic studies strongly indicate 

shared pathology across neuropsychiatric diseases and weak neurobiological “signal” of 

depression alone – the primary finding of the MDD-specific meta-analysis by Müller et al. 

Shared pathology across illnesses is “not a component of current psychiatric nosology” 

(Goodkind et al, 16), though these findings may align with newer research initiatives 

such as the Research Domain Criteria (RDoC) project (22, 23). Despite the notable 

successes of transdiagnostic meta-analyses and absence of significant single-diagnosis 

findings, disease-specific approaches remain an important area for research. The mental 

health care system broadly considered —care providers, insurance providers, regulatory 

agencies— are not likely to abandon established psychiatric terminology in light of the 

above neurobiological observations. Further, clinical trials testing new therapies are 

typically carried out in patients falling into specific diagnostic categories, rather than 

being symptom-driven or transdiagnostic. For these reasons, it is important to determine 

if MDD-specific, regional neurobiological changes can be detected using neuroimaging. 

Prior studies have failed to find a neurobiological “signature” of MDD alone using task-

activation only (6,16), VBM only (17,18), and resting-state VBP only (19). We propose to 

test this hypothesis using both VBM and resting-state VBP studies in combination.  

           The co-localization of structural and functional and structural abnormalities is well 

documented across neuropsychiatric diseases. Numerous disorders including 
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Parkinson’s disease (24), Alzheimer’s disease (25), primary progressive apraxia (26), 

multiple sclerosis (27, 28), schizophrenia (29), and various mood disorders including 

MDD and bipolar disorder (30, 31), have demonstrated conjoint abnormalities of brain 

function and structure, with recent research investigating this relationship in MDD 

specifically (32, 33). The concordance of structural and functional abnormalities in 

neurodegenerative diseases underlies the network degeneration hypothesis (34-36), of 

which MDD is also being investigated as a potentially network-based disorder (37-40). 

Furthermore, recent research investigating the network degeneration hypothesis 

indicates that high traffic network “hubs” are more likely to experience gray matter 

lesions as a result of disease-related overstimulation (41, 42), which may contribute to 

subsequent decreases in brain function at affected regions. As we anticipate the co-

localization of structural and functional disease effects in MDD, a central objective of the 

present study is to examine the convergence of gray matter atrophy, increases, and 

decreases in resting-state function both independently and jointly.  Currently, voxel-

based morphometry (VBM) investigations of gray matter alterations in MDD form a large 

body of literature suitable for meta-analysis. Similarly, voxel-based physiological (VBP) 

investigations using PET and SPECT imaging of brain blood flow and glucose 

metabolism, together with recent advances in functional magnetic resonance imaging 

techniques contribute to a growing corpus of VBP literature in MDD. The present study is 

among the first to comprehensively assess resting-state functional (VBP) and structural 

(VBM) findings in MDD both independently and in pooled multi-modal datasets.  

Thus, the objective of this meta-analysis is to assess the spatial convergence of 

brain abnormalities in MDD as detected by structural and resting-state functional 

neuroimaging data. Our primary hypothesis is that MDD will demonstrate pathological 

changes detectable across neuroimaging paradigms. We hypothesize localized 

convergence of: (a) gray matter atrophy, (b) increased, and (c) decreased brain function 



9 
 

in MDD patients relative to controls. We also hypothesize improved co-localization of 

abnormalities, as evaluated through pooled datasets for secondary analysis (d).  The 

meta-analytic design and statistical thresholds for the present study were selected to 

emulate Müller et al’s 2017 study in order to compare the findings from task-based 

versus task-independent investigations of MDD. We also hypothesize that accounting for 

the clinical heterogeneity of MDD, by assembling patient subgroups (to the degree 

possible through available literature), can enhance the convergence of identified brain 

regions. Hypotheses confirmed by this meta-analytic approach, we would submit, should 

be regarded as providing direction for further primary-data studies, rather than seen as 

established conclusions.  

 
 
Methods 

Literature Search 

A literature search of PubMed, Google Scholar, BrainMap (18, 43-45) and reference 

tracing of previous meta-analyses was performed to identify MDD neuroimaging 

experiments reporting either gray matter atrophy, or increased resting state function, or 

decreased resting state function compared to healthy control subjects. MDD related 

hypertrophy, a rare phenomenon occasionally reported in remitted MDD (relative to 

acute MDD), was not included in this analysis. Voxel-based morphometry (VBM) studies 

and resting state VPB studies of regional cerebral blood flow (rCBF), regional 

homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF/fALFF), and 

regional glucose metabolism were identified using various combinations of the search 

terms major depressive disorder, major depression, depression, unipolar depression, 

VBM, gray matter, rCBF, positron emission tomography (PET), single photon emission 

computed tomography (SPECT), arterial spin labeling (ASL), ReHo, ALFF/fALFF, 

glucose metabolism, brain activity, and resting state. The literature search was 
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completed January 2018. A study selection diagram for this meta-analysis is detailed in 

Figure 1 and further details of the literature search are provided in Supplemental 

Appendix 1.  

 
Study selection criteria pertaining to indices of quality  

Preliminary selection criteria required that studies be peer-reviewed, English language 

neuroimaging reports. Studies identified outside of the BrainMap database were 

reviewed by BrainMap team members and subsequently coded through Scribe and 

submitted to the database (21). Standard expectations for publication in this field is for 

application of motion correction, measures to limit motion during scan, and/or exclusion 

of data that exhibited excessive motion during acquisition. Measure(s) for motion 

correction utilized in each included study are tabulated in ST1 the Supplemental 

Materials.  

 
Study selection criteria relating to subjects 

MDD patients from included studies were diagnosed using DSM-III (4 studies), DSM-IV 

(85 studies), or ICD-10 (3 studies) evaluation. Only studies comparing patients in the 

acute phase of MDD to healthy controls were included. Experiments including remitted 

subjects (n=2) or any contrast other than MDD vs. healthy controls were excluded 

(n=5)(Figure 1). Studies utilizing dual diagnosis patient populations with other major 

medical illness (e.g., MDD and hypothyroidism) or psychiatric comorbidities were 

excluded (n=13). However, we allowed for the inclusion of studies in which partial 

populations of the patient cohort had comorbidities (e.g., subset of MDD patients with 

anxiety symptoms) with the criterion that MDD was the primary diagnosis. Studies with 

strict exclusion criteria for psychiatric comorbidities were flagged for use in subsequent 

meta-analytic grouping. We allowed for the inclusion of studies that featured patient 

populations of varying medication status, but flagged those studies that recruited patient 
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populations of specific medication status (all medicated, treatment naive, drug washout) 

for subsequent meta-analytic grouping. We also flagged studies that recruited patient 

populations of specific severity or disease onset (first episode, chronic/recurrent, 

treatment resistant, adolescent, geriatric). 

 
Study selection criteria relating to technical aspects 

Studies of resting-state VBP included investigations of regional cerebral blood flow 

(rCBF), regional cerebral glucose metabolism, regional homogeneity (ReHo), and 

amplitude of low frequency fluctuations (ALFF/fALFF) using imaging methods of positron 

emission tomography (PET), single photon emission computed tomography (SPECT), 

and functional magnetic resonance imaging (fMRI) (Figure 1). Included resting-state 

VBP studies only allowed for those that used voxel-wise whole-brain methods to 

compare MDD patients to healthy control subjects. Thirty-six studies investigating 

functional or effective connectivity were excluded from this meta-analysis because they 

used regional sampling (N=26), used incompatible patient-group contrasts (N=2), were 

review articles or meta-analyses (N=4), or were multivariate analyses only, without 

mass-univariate analyses (N=2), and the remaining studies (N=2) were excluded 

because as functional or effective connectivity studies they cannot be integrated in 

current coordinate-based meta-analysis methods. 

Included studies of gray matter volume utilized voxel-based morphometry 

methods. Included studies only allowed for those that used voxel-wise whole-brain 

methods to compare MDD patients to healthy control subjects. Studies using non whole-

brain methods, such as ROI or network restricted sampling, (n=19) were excluded. 

Only studies reporting results as coordinates using standard reference space 

(Talairach or Montreal Neurological Institute [MNI]) were included; those studies which 

did not report results in the form of standardized coordinates (n=8) or did not report 
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coordinate system used (n=1) were excluded.  Coordinates were converted to Talairach 

space for this analysis (46). To avoid repeated inclusion of the same patient populations 

we carefully screened studies that pulled from open source or national data repositories 

and excluded those that reported use of a patient cohort already included in this meta-

analysis (n=4).   

Data non-redundancy is of crucial importance to avoid bias in meta-analytic 

findings.  To avoid inclusion of duplicate patient populations in the present study, we 

performed several pre- and post hoc assessments. First, we carefully screened studies 

that pulled from open source or national data repositories and excluded those that 

reported duplicate patient cohorts (n=4). For multiple studies deriving from the same 

research group, patient populations and reported coordinates were inspected to assess 

potential redundancy (18). For studies reporting multiple contrasts from the same patient 

population, only one contrast per patient population was used in each meta-analysis 

(47). Post-hoc assessments were performed in cases when multiple experiments from 

the same research group contributed to identified clusters. In these cases, leave-one-out 

analyses were performed to assess potential redundant contributions to identified 

clusters. In cases when potential patient overlap was indicated by leave-one-out 

analysis, only the largest study was included for final meta-analysis. Another meta-

analysis best practice is to contact authors in confirm to data independence, however, 

attempts to contact research groups of interest are not always successful.  

 

All Effects Analysis 

Coordinates from all included studies were collectively pooled to generate a unified All 

Effects meta-analytic category. Coordinates from multiple experimental contrasts 

obtained from the same subject group (such as studies that reported both locations of 

gray matter atrophy and locations of increased or decreased function relative to controls 
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in separate experiments) were concatenated to generate sign-independent foci groups 

for each patient population tested. For detailed description, see SA1 for “Details of ALE 

Analysis in Supplemental Materials. All patients, including both medicated and 

unmedicated patients at time of scanning, were included in the All Effects analysis. 

 

Meta-analytic Data Classes 

To assess modality-specific contributions to findings from the All Effects analysis, input 

data were grouped into primary and secondary meta-analytic groups for analysis. 

Primary analyses included three single modality classes and two dual modality classes, 

as follows. Three single modality classes were created by grouping experiments of 

decreased gray matter volume in MDD patients compared to controls (VBMneg), 

decrease in resting state function in MDD patients compared to controls (VBPneg), and 

increased function in MDD patients compared to control subjects (VBPpos) (Figure 2- 

items 1, 2, & 3 respectively); two dual modality classes were created by combining the 

classes of rsFX-decrease and rsFX-increase with the GMV data (VBPneg + VBMneg 

and VBPpos + VBMneg) (Figure 2- items 4 & 5, respectively). In studies that reported 

both VBM and VBP changes in the same subject population, we included only the 

coordinates reporting change in VBP in the pooled datasets (n=5). For initial analysis of 

the five major meta-analytic classes, all available data (including patients of varying 

medication status at time of scan) were included to test convergence of clinically 

heterogeneous patient groups.  

 
Patient Groupings 

Studies were grouped for analysis into two tiers: All Effects (all patient types) and patient 

subgroups. Studies were subgrouped as: a) drug/treatment naive MDD only; b) treated 

MDD with drug washout before imaging, and c) MDD with no psychiatric comorbidities. 
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For each sub-group, all five classes of experiments were analyzed, provided the number 

of included experiments was sufficient for robust ALE calculation (Figure 2- items 6 

through 18). Per Eickhoff et al 2016, the minimum number of experiments required for 

robust ALE analysis is 17 (20). 

 Other subgroups attempted (first episode, chronic/recurrent, treatment resistant, 

adolescent, geriatric) did not include a sufficient number of individual experiments for 

meta-analysis (see Discussion). Drug washout groups also did not include a sufficient 

number of experiments for standalone analysis. In an effort to maximize the use of 

available information from individual studies, we combined the drug washout and drug 

naive groups to assess potential effects from a medication-free group. 

 
ALE meta-analysis 

Activation likelihood estimation (ALE) (8,10,14,20) was performed using GingerALE 

(version 3.0) software (48).  The ALE algorithm was originally developed for use in task-

activation functional studies (12), but has undergone numerous revisions including 

adaptations for use with VBM studies (47,49). ALE assesses spatial convergence of 

reported findings against the null hypothesis that findings follow a random spatial 

distribution rather than demonstrating statistically significant convergence at discrete 

regions. The most current versions of ALE model reported coordinates, or foci, as 3D 

Gaussian probability distributions to generate per-experiment modeled-activation (or 

modeled-atrophy) maps (50). ALE derives full-width half-maximum for each Gaussian 

distribution based on sample size, allowing experiments with larger subject sizes greater 

statistical certainty. ALE generates a union map of all per-experiment MA maps and 

tests for above-chance spatial convergence through a variety of available thresholding 

options. A revised version of the algorithm (48) recommends either Family-wise error or 

Cluster-level inference thresholding methods for robust analysis. The selected method 
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for the present study, cluster-level inference, generates a simulated dataset of randomly 

distributed foci based on characteristics of the input dataset for testing the null 

hypothesis.  

Results were thresholded for significance using cluster-level inference of P<0.05 

with a cluster-forming threshold of P<0.001 to reflect the study design from Müller’s 2017 

study (6) and ALE best-practices (21, 51). ALE analysis was re-tested at cluster-level 

inference of P<0.0027 (Bonferroni correction for multiple comparisons of 18 total meta-

analyses) to assess the robustness of identified clusters.  

 
Noise simulation for estimation of file-drawer effect 

Presently, the potential for unpublished null findings in the neuroimaging literature is not 

accounted for in the ALE algorithm, as ALE’s focus is to assess convergence of non-null 

findings of which a large portion are anticipated to be false positives (52). Potential 

publication bias in the present study was evaluated through a modified version of the 

Fail-Safe N method by Acar et al to estimate the robustness of identified results against 

unpublished neuroimaging findings (15). A recent simulation utilizing the BrainMap 

database identified that missing contrasts may be estimated at 6 per every 100 

instances of reported findings (53). Thus, we re-tested convergent meta-analyses with 

an additional 6% added noise to assess the robustness of identified clusters.  Surviving 

clusters were subsequently re-tested with higher rates of noise up to 30%.  

 
  

Results 

A total of 92 papers (97 studies) with 152 individual experiments comprising results from 

2,928 patients were identified for inclusion in this meta-analysis. The number of 

experiments included in each major meta-analytic category were: VBMneg: 43 

experiments; VBPneg: 62 experiments; and, VBPpos: 47 experiments. ST1 & ST2 list all 
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studies included in meta-analysis. SF1 shows the distribution of foci from each of the 

major meta-analytic categories (see Supplemental Materials).  

 
All Effects Analysis 

The All Effects analysis comprised a total of 102 foci groups created from summed 

results from all experiment types. This unified analysis identified a single region within 

the left hippocampus as demonstrating convergent abnormality, listed in Table 2 and 

shown in Figure 3.  

  

Heterogeneous Group: All Patients 

Among the classes of GMV, VBPneg, VBPpos, and VBPneg + VBMneg utilizing all 

pooled patient data, none revealed any significant regions of convergent brain 

abnormality. The class of VBPpos + VBMneg utilizing clinically heterogeneous patient 

data identified consistent aberrant brain regions in MDD within the left hippocampus (as 

identified in the All Effects analysis) and an additional region of significant convergence 

in the subgenual cingulate cortex (listed in Table 2 and illustrated in Figure 3). 

 
Patient Subgroups 

Clinical subgroups that fulfilled n>17 experiments criteria included the categories of drug 

naive patients (Drug Naive), drug naive and drug washout patients combined 

(Naive+Washout), and those studies with strict exclusion criteria of comorbid psychiatric 

disorders for MDD patients (Only MDD). See ST3-8 in supplement for lists of studies 

included in each meta-analytic grouping. 

A total of 13 clinical subgroups across the five meta-analytic classes included a 

sufficient number of experiments to perform ALE analysis. Among the 13 subgroups, 

only 5 yielded significant results (listed in Table 2 and illustrated in Figure 3). Clinical 

subgroups within the VBPpos + VBMneg class identified significant convergence among 
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the Drug Naive, Naive+Washout, and the Only MDD clinical groups. Consistent 

abnormal brain areas identified within these clinical subgroups included regions of the 

left hippocampus (as previously identified) and an additional region including areas of 

the right amygdala and ventral anterior putamen. Clinical subgroups from the VBPneg 

class identified significant regions among the Drug Naive and Only MDD clinical groups. 

Areas identified within these clinical subgroups included three additional regions to those 

previously identified, a region encompassing areas of the left middle occipital and left 

inferior temporal gyri, a region within the left retrosplenial cortex, and a region within the 

right putamen.  

 

Convergence by Imaging Modality 

Data from various imaging modalities contributed to the clusters identified through ALE 

analysis, with no single modality being profoundly over-represented in any result from 

the VBPpos + VBMneg class. Regions identified in clinical subgroups of the VBPneg 

class were somewhat dominated by contributions from ALFF and ReHo experiments, 

though this could be attributed to their overall representation within the dataset tested. 

For detailed distributions, see ST9-11.  

 
Noise Simulation 

Each identified cluster was re-tested in meta-analyses with added noise (beginning at 

6% noise) to assess robustness against potentially unpublished findings. Surviving 

clusters were subsequently re-tested with higher rates of noise up to 30%. Table 2 

details the Fail Safe N percentage (FSN %) of additional noise that must be added to 

each meta-analysis to result in failure of convergence for previously identified clusters. In 

general, noisier contrasts (e.g., All Effect and other groups including All Patients) are 

less robust against the simulation of additional noise.  
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Discussion  

Our findings do not support our first three hypotheses, with no brain regions of significant 

convergence arising from meta-analysis of (a) gray matter atrophy, (b) increased, or (c) 

decreased brain function in MDD patients compared to controls. However, brain regions 

demonstrating significant abnormality did arise from meta-analysis of pooled structure-

function findings in MDD, supporting our hypothesis of co-localized effects (d).  We also 

identified additional regions of convergence from meta-analysis of clinical subgroups 

despite decreased sample size.   

The present work, to our knowledge, is the first to comprehensively assess multi-

modal imaging data to investigate the convergence of voxel-based morphometry and 

voxel-based pathophysiology findings in MDD. Regions of significant convergence 

identified in this study include: the subgenual cingulate cortex, the left hippocampus, the 

right amygdala/putamen, the left retrosplenial cortex, and the right middle 

occipital/inferior temporal gyri. The brain regions identified in the present meta-analysis 

are included in many current models of MDD pathology and treatment approaches. 

Furthermore, our methods of largely pooling multi-modal data, and conversely 

delineating data by available clinical details, improved convergence of results. Our 

identification of brain regions demonstrating reliable abnormality in MDD, whereas 

previous meta-analyses have failed to identify any disease-specific effects in MDD, is a 

significant contribution to existing literature. We view these results as motivations for 

refinement of future primary studies in MDD.  

 
Identified Regions 

Identification of consistent abnormality within the subgenual anterior cingulate cortex 

(hereafter subgenual cingulate) in the present meta-analysis is a potentially important 

finding for the current state of MDD research. The subgenual cingulate has been widely 
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implicated in major depressive disorder as a regulator of mood (30, 31, 54-56), in the 

processing of emotional stimuli (57-59) and as a target for network based treatments 

such as deep brain stimulation (60- 63) and a downstream target for transcranial 

magnetic stimulation (64-67).  Reliable identification of the subgenual cingulate through 

large-scale, multi-modal meta-analysis strongly supports further research of this region’s 

role in MDD. Furthermore, the subgenual cingulate has not been reliably identified in 

transdiagnostic meta-analyses such as the VBM-ALE analysis conducted by Goodkind 

et al (17) (although subgenual cingulate does appear to be present in the all-groups 

analysis; see Figure 2a). This distinctive finding arising from the present study suggests 

that disease-specific effects, beyond transdiagnostic-only effects, are detectable in 

neuroimaging data and warrants further exploration. 

The left hippocampus was also identified in this study. Decreased hippocampal 

volume has been observed in neuroimaging studies of MDD over the past 20 years (68-

72). Hypotheses of MDD-related hippocampal volume decline posit that the 

hippocampus may be affected by stress (72) and may contribute to the cognitive (73) 

and recollection memory deficiencies (74, 75) often present in MDD sufferers. The 

hippocampus has also been implicated in MDD through disrupted hippocampal 

connectivity effects on self-referential activity in MDD (76), and demonstrated conjoint 

reductions in gray matter density and activation during working memory task in MDD 

patients (77). The identification of the hippocampus in the present study is a notable 

finding for both past and future investigations of this brain region’s role in MDD.  

We also identified regions of the right amygdala and right putamen in the present 

study. In recent investigations utilizing emotional valence paradigms, the amygdala has 

demonstrated aberrant activation in MDD patients compared to healthy controls (78). 

The amygdala has also demonstrated reliable volume differences in unmedicated MDD 

patients relative to controls in a meta-analysis of 13 individual neuroimaging studies 
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(79). The putamen, though its potential role is less well established in MDD, has also 

demonstrated volumetric and shape abnormalities in untreated, first episode MDD (80). 

The putamen has also demonstrated functional disruption in MDD through investigation 

of the correlation between anhedonia severity and aberrant neural activity in response to 

emotional stimuli (81). Our findings suggest the need for continued investigation of the 

amygdala and putamen’s potential roles in MDD. 

Other regions identified in this study including the left retrosplenial cortex 

(encompassing regions within both BA 29 and BA 30), and an overlapping area of the 

right middle occipital and inferior temporal gyri currently do not have well established 

roles in current models of MDD. A recent, large study of MDD patients (n=336) 

demonstrated that altered functional connectivity between the retrosplenial cortex and 

other key brain regions may contribute to increased rumination symptoms in depression 

(82). Brain perfusion deficits in occipital areas have been previously observed in 

adolescent MDD patients, however, this study provided uncertain conclusions for the 

region’s significance in MDD (83). More recently, increased functional connectivity with 

the right middle occipital gyrus and the amygdala has been observed in association with 

cognitive dysfunction in MDD (84). The right middle occipital/ inferior temporal gyri have 

also demonstrated reduced cortical thickness in MDD patients compared to controls in a 

recent large-scale study from the ENIGMA cohort (N=1902) (85). Though the role of 

these regions in MDD is less well defined, results from the present study indicate that 

further investigation of these regions’ potential role in the pathophysiology of MDD is 

warranted. 

 
 
Convergence from Patient Groupings  

Separation of data into patient subgroups played a critical role in identifying additional 

brain regions beyond those found in the more heterogeneous groups. To our knowledge, 



21 
 

this is the largest meta-analysis in MDD that also included a sufficient number of 

experiments to perform ALE analysis in subgroups. Our findings suggest that clinical 

heterogeneity in MDD has observable neuroimaging effects, which warrant further 

investigation. 

Our study was limited by the recruiting and reporting methods employed at the 

individual study level. Author-defined patient groups in the present study were largely 

limited to medication status (treatment naive and drug washout groups). Other 

categories including patient groups of specific severity (first episode, recurrent/chronic, 

treatment resistant) and age of onset (geriatric or adolescent depression) did not yield 

n>17 experiments (20) and were not further analyzed in our study. Of note, 60% of the 

experiments included in the Drug Naive categories (VBPpos + VBMneg and VBPneg 

Drug Naïve groups) included experiments reporting findings from first-episode MDD 

patients (see ST5 and ST8). Findings from these subgroups may indicate neuroimaging 

effects specific to first-episode MDD, though we were not able to reliably test this effect 

in the present analysis. As such, we strongly recommend future studies investigating this 

potential effect. 

More meaningful patient categories for future studies would ideally focus on 

severity, duration, and treatment response in MDD. Of the 92 publications included in 

the present analysis, 42 studies (51% of total) recruited mixed MDD patient populations 

and pooled all patients into heterogeneous groups regardless of age of onset, disease 

duration/severity, and number of previous episodes. It is a common convention in 

neuroimaging publications to include patient demographic tables reporting the mean and 

standard deviation of the aforementioned clinical features, though this is not 

standardized or consistent among current literature. A central recommendation from the 

present work is for standardized recruiting and reporting mechanisms to be adopted at 

the individual study level. Due to the heterogeneous presentation of MDD, investigations 
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of more homogenous patient populations would both improve the interpretation of 

findings at the individual study level and promote more meaningful investigations at the 

meta-analytic level.   

 

Convergence from Imaging Modalities 

A central finding from the present study is the failure of convergence in the three single-

modality meta-analyses and successful convergence – albeit relatively weak -- in 

pooled, multi-modality datasets.  To our knowledge this is the largest meta-analysis in 

MDD to date and the first to pool results across imaging modalities (VBM and VBP) in 

this manner. Identification of convergent brain abnormalities across structural and 

functional dataset supports our hypothesis for the co-localization of disease effects in 

MDD. This co-localization, and/or longitudinal progression, of MDD-specific disease 

effects are not well established in current literature and call for further investigation. As 

the meta-analyses here were greatly facilitated by access to the collated and coded 

VBM literature shared in the BrainMap database, we anticipate that expanding BrainMap 

to include a sector sharing the resting-state VBP literature will be an important tool for 

future meta-analyses. 

 

Overall, convergent findings in the present meta-analysis are sparse compared 

to the volume of input data (see SF1). Though the identification of regions of significant 

convergence in the present study is a distinct advance from previous meta-analyses – 

which failed to yield any convergent findings – the sparseness of present results is 

nonetheless notable. In our largest analysis (All Effects) only 8 of 102 total experiments 

contributed to the identified region of convergence. In our smallest analysis, (VBP-neg, 

Drug Naive) only 3 of 20 total experiments contributed to the identified region (see ST12 

for details). The small number of contributing experiments is a stark contrast to the large 
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volume of findings reported at the individual study level. An interpretation of sparse 

findings from the present study may be attributed to our analysis of exclusively voxel-

wise whole-brain studies. Conclusions from Sprooten et al’s 2017 meta-analysis (which 

included analysis of both whole-brain and ROI-based studies) found that though ROI-

based approaches seem more adept at yielding significant findings, this may be due to 

confirmation bias stemming from a priori selection of brain regions for selective analysis. 

As a result of this bias, Sprooten reported that there may be an artificial exaggeration of 

particular brain regions’ role in psychiatric diseases and findings from ROI-based studies 

should be interpreted with caution. Considering the broad neuroimaging literature, the 

scarcity of results at the meta-analytic level underscores the impact of ROI-driven 

findings (16), clinical heterogeneity (6), and overall replication problem in current 

literature.  

Finally, our findings suggest the possibility of improved convergence in task-

independent data over task-activation data. The lack of convergence in the 2017 task-

activation meta-analysis conducted by our group, Müller et al, was speculated to be due, 

in part, to confounds introduced through inconsistency of the processes investigated in 

various tasks (6). Further pitfalls of task-activation based studies include the 

dependence of task-based paradigms on patient cooperation (86) and lack of diagnostic 

specificity in findings from task-fMRI studies (16). The advantages of task-free 

paradigms, especially for use in meta-analysis, however, are not definitively addressed 

in current literature and warrants further investigation.   

 

Limitations 

A primary motivation for this meta-analysis was to compare task-independent findings to 

those from Müller et al (our group, 6), which utilized task-activation data. Thus following 

the All Effects analysis, we performed post-hoc analysis (without correction for multiple 
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comparison) utilizing the same parameters from Müller for significance threshold and 

design for sub-meta-analyses (cluster-level inference of P<0.05 with a cluster-forming 

threshold of P<0.001). We have also reported the clusters that prevail after Bonferroni 

correction (cluster-level inference restricted to P<0.0027) in Table 2. The survival of two 

regions identified from Drug Naïve and Only MDD subgroups further supports our 

conclusion that sample homogeneity in MDD plays a major role in convergence of 

neuroimaging findings.     

Another limitation of the present work is the inability of current CBMA methods to 

integrate findings from functional and effective connectivity studies. Functional and 

effective connectivity studies represent a rich corpus of literature: 36 were identified in 

the literature search for the present work. However, the majority of these (26 of 36) were 

regionally restricted, using ROIs for analysis or seeding, making them ineligible for ALE 

CBMA. Only 2 resting-state functional connectivity studies were whole-brain and voxel-

wise. These were not included in the present analysis.   

Finally, as previously discussed, recruitment of clinically heterogeneous MDD 

populations at the individual study level substantially contributed to the limitations of the 

present work.  Whole-group analyses were limited by varied medication status and other 

factors relating to clinical heterogeneity of MDD, which we tested for in subgroup meta-

analyses to the best of our ability. Fifty-one percent (51%) of all publications included in 

the present analysis recruited mixed MDD patient populations and pooled all patients 

into heterogeneous groups regardless of age of onset, disease duration/severity, and 

number of previous episodes. As discussed in our Methods and Results, the testing of 

subgroups based on MDD severity (first episode, chronic/recurrent, treatment resistant) 

would have provided more clinically meaningful findings. As such, our findings from 

clinical subgroups limited to medication status may not definitively indicate 

neurobiologically homogenous patient characteristics and could, instead, be due to other 
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methodological factors that we were not able to reliably test for. However, delineating 

patient groups to the best of our ability did improve convergence of results and indicates 

that clinical heterogeneity of MDD warrants further investigation in future neuroimaging 

studies. 

 

Conclusions 

Our findings suggest that MDD exhibits a concordance of abnormality in both structure 

(VBM) and function (VBP) in select brain regions. Our findings suggest the presence of 

MDD-associated brain features, in contrast to lack of disease-specific findings from 

previous transdiagnostic and MDD-specific meta-analyses. Per our successful 

integration of VBP findings, we recommend the addition of a VBP sector to the BrainMap 

database to facilitate future meta-analyses in this area of study. Finally, our analysis of 

clinical heterogeneity within this meta-analysis suggests that diverse patient populations 

may pose significant confounds in the neuroimaging findings in MDD.  
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Figure Legends: 

Figure 1- Study selection delineation diagram 

A literature search identified an overall dataset of 92 independent publications reporting 

152 experiments. *Note that 5 publications included investigations of both structural and 

functional changes, contributing a total of 97 “studies”. Experiment modalities included: 

regional cerebral blood flow (rCBF) studies utilizing single photon emission tomography 

(SPECT), arterial spin labeling (ASL), and oxygen-15 positron emission tomography (O-

15 PET); regional homogeneity (ReHo); (frequency) amplitude of low frequency 

fluctuations (ALFF/fALFF); fluorodeoxyglucose metabolism (FDG-PET); and voxel-based 

morphometry investigations of gray matter volume.. Experiment classes included: 

decreased gray matter volume relative to controls (VBMneg), decreased and increased 

function relative to controls (VBPneg and VBPpos, respectively).  

 
Figure 2- Meta-Analytic Groups Tested. First, a preliminary All Effects analysis of 

unified results across all imaging modalities was preformed. Results from all 

experiments were concatenated into unified disease-control contrast groups of 

VBMneg+VBPpos+VBPneg. Next,18 different meta-analyses were performed including 

the five major meta-analytic classes of decreased gray matter volume relative to controls 

(VBMneg), decreased (VBPneg) and increased (VBPos) function relative to controls; 

each rsFX group pooled with the GMV group (VBPneg + VBMneg and VBPpos + 

VBMneg), and subgroups of each meta-analytic class comprised of specific clinical 

populations where number of qualifying experiments exceeded 17. 

 
Figure 3- Abnormal regions identified. Abnormal regions identified from All Effects 

analysis and meta-analytic groupings of: combined VBPpos and VBMneg, and VBPneg. 

Clinical subgroupings which also identified abnormal regions are shown. 

 


