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Abstract



Objective: Imaging studies of major depressive disorder (MDD) have reported structural
and functional abnormalities in many, spatially diverse brain regions. Quantitative meta-
analyses of this literature, however, have failed to find statistically significant between-
study spatial convergence, other than transdiagnostic-only effects. In the present study,
the authors apply a novel, multi-modal, meta-analytic approach to test the hypothesis

that MDD exhibits spatially convergent structural and functional brain abnormalities.

Methods: This coordinate-based meta-analysis (CBMA) included voxel-based
morphometry (VBM) studies and resting-state voxel-based pathophysiology (VBP)
studies imaging blood flow (BF), glucose metabolism, regional homogeneity (ReHo), and
amplitude of low frequency fluctuations (ALFF/fALFF). Input data were grouped into
three primary meta-analytic classes: gray matter atrophy; increased function; and,
decreased function in MDD patients relative to healthy controls. Secondary meta-
analyses grouped across primary categories. Tertiary analyses grouped by medication
status and absence of psychiatric comorbidity. Activation likelihood estimation (ALE) was

used for all analyses.

Results: In total 92 publications reporting 152 experiments were identified, collectively
representing 2,928 MDD patients. Primary analyses detected no convergence across

studies. Secondary analyses identified portions of subgenual cingulate, hippocampus,
amygdala, putamen, retrosplenial cortex, and middle occipital/inferior temporal gyri as
demonstrating convergent abnormalities. Tertiary analyses (clinical subtypes) showed

improved convergence relative to secondary analyses.

Conclusions: CBMA identified spatially convergent structural (VBM) and functional
(VBP) abnormalities in MDD. Present findings suggest replicable neuroimaging features

associated with MDD, beyond the transdiagnostic effects reported in prior meta-analysis.



Our findings support continued research focus on the subgenual cingulate and other

select regions’ role in MDD.



Introduction

Major depressive disorder (MDD) is the single largest contributor to disability
worldwide, impacting as many as 300 million sufferers annually (1). Despite decades of
basic science, clinical neuroscience, and psychiatric research, the pathophysiology of
MDD is not well understood (2). Human neuroimaging approaches comprise powerful,
non-invasive methods to investigate the neurobiological mechanisms underpinning
psychiatric disorders (3,4). Neuroimaging’s promise notwithstanding, recent reports have
challenged the reliability of this literature, drawing attention to small sample sizes (5),
clinical heterogeneity (6), and flawed correction for multiple comparisons (7), which
jointly work to inflate false positive rates. Though improvement of neuroimaging
techniques is currently an active area of research, previous findings are not without
value. Meta-analytic approaches are capable of addressing many of the methodological
concerns that contribute to varied findings at the individual study level and allow
identification of reliable, true-positive findings in existing literature.

Coordinate-based meta-analysis (CBMA) is a well-established family of methods
which hold a prominent position in neuroimaging research (8, 9). CBMA offers a large-
scale, data-driven approach to the identification of brain regions consistently altered by
disease by testing for spatial convergence across reported findings from previously
published neuroimaging studies. CBMA tests for convergence against the null
hypothesis that reported findings follow a random spatial distribution across the brain,
rather than demonstrating convergent abnormality in discrete brain regions. CBMA is
applicable only to data acquired from the whole brain and analyzed in voxel-wise
manner, to ensure identification of convergent effects in a spatially unbiased (non-ROI
based) manner (8, 10). CBMA applies equally well to multiple types of imaging data

including task activation, voxel-based morphometry (VBM; 11), and resting state voxel-



based pathophysiology (VBP). Activation/anatomical likelihood estimation (ALE; 10, 12-
14) — the most widely adopted CBMA method (15) — computes the union of reported
findings based entirely on location. Unlike effect-size meta-analysis, ALE is blind to
magnitude and sign (+/-) of effect. Though ALE has been traditionally employed in single
modality meta-analysis, its flexibility for integration of findings across imaging methods
allows for comprehensive assessment of disease related effects. In the present study,
we employed CBMA/ALE to identify convergent structural (VBM) and physiological
(VBP) disease effects of both signs (+/-).

Several recent, large-scale meta-analyses of structural and functional imaging in
MDD and other psychiatric disorders strongly suggest that concerns about a
preponderance of false positives in the neuroimaging literature are well justified. Table 1
provides an outline of the meta-analyses described in the present summary. A
transdiagnostic meta-analysis of task-activation studies across several Axis-1 disorders
by Sprooten and colleagues (16) found shared effects across diseases, however no
effect of diagnosis or RDoC domain on spatial distribution of reported findings. A similar
transdiagnostic ALE meta-analysis by Goodkind and colleagues (17) assessed regional
atrophy (VBM) patterns across 6 Axis-I disorders and did find spatial convergences in
bilateral anterior insula and anterior cingulate when assessing across all disorders, but
found no unique characteristics of any disorder. A transdiagnostic independent
component analysis (ICA) meta-analysis of VBM studies Vanasse and colleagues (our
laboratory) assessed disease loadings on several independent brain networks (18). The
central finding from Vanasse et al was that no disease loaded on a single network, and
no network loaded on a single disease. Furthermore, one of the component networks
identified by Vanasse’s group closely reflected the pattern of shared pathology identified
through Goodkind's transdiagnostic ALE analysis of VBM data. An ALE meta-analysis of

resting-state VBP studies across 11 neuropsychiatric disorders by Sha and colleagues



(19) also identified shared effects across diseases, including widespread abnormalities
in MDD patients. However, the disease-specific distribution identified in Sha et al.’s
analysis of MDD failed to converge at statistical thresholds recommended by ALE best-
practice guidelines (20, 21). In an ALE meta-analysis of cognitive and emotional task-
activation studies limited to MDD cohorts, Miiller et al (our group; 6), no brain regions of
significant convergence were identified. Collectively, these meta-analyses pose a
challenge to the psychiatric neuroimaging community.

Findings from the aforementioned transdiagnostic studies strongly indicate
shared pathology across neuropsychiatric diseases and weak neurobiological “signal” of
depression alone — the primary finding of the MDD-specific meta-analysis by Miiller et al.
Shared pathology across illnesses is “not a component of current psychiatric nosology”
(Goodkind et al, 16), though these findings may align with newer research initiatives
such as the Research Domain Criteria (RDoC) project (22, 23). Despite the notable
successes of transdiagnostic meta-analyses and absence of significant single-diagnosis
findings, disease-specific approaches remain an important area for research. The mental
health care system broadly considered —care providers, insurance providers, regulatory
agencies— are not likely to abandon established psychiatric terminology in light of the
above neurobiological observations. Further, clinical trials testing new therapies are
typically carried out in patients falling into specific diagnostic categories, rather than
being symptom-driven or transdiagnostic. For these reasons, it is important to determine
if MDD-specific, regional neurobiological changes can be detected using neuroimaging.
Prior studies have failed to find a neurobiological “signature” of MDD alone using task-
activation only (6,16), VBM only (17,18), and resting-state VBP only (19). We propose to
test this hypothesis using both VBM and resting-state VBP studies in combination.

The co-localization of structural and functional and structural abnormalities is well

documented across neuropsychiatric diseases. Numerous disorders including



Parkinson’s disease (24), Alzheimer’s disease (25), primary progressive apraxia (26),
multiple sclerosis (27, 28), schizophrenia (29), and various mood disorders including
MDD and bipolar disorder (30, 31), have demonstrated conjoint abnormalities of brain
function and structure, with recent research investigating this relationship in MDD
specifically (32, 33). The concordance of structural and functional abnormalities in
neurodegenerative diseases underlies the network degeneration hypothesis (34-36), of
which MDD is also being investigated as a potentially network-based disorder (37-40).
Furthermore, recent research investigating the network degeneration hypothesis
indicates that high traffic network “hubs” are more likely to experience gray matter
lesions as a result of disease-related overstimulation (41, 42), which may contribute to
subsequent decreases in brain function at affected regions. As we anticipate the co-
localization of structural and functional disease effects in MDD, a central objective of the
present study is to examine the convergence of gray matter atrophy, increases, and
decreases in resting-state function both independently and jointly. Currently, voxel-
based morphometry (VBM) investigations of gray matter alterations in MDD form a large
body of literature suitable for meta-analysis. Similarly, voxel-based physiological (VBP)
investigations using PET and SPECT imaging of brain blood flow and glucose
metabolism, together with recent advances in functional magnetic resonance imaging
techniques contribute to a growing corpus of VBP literature in MDD. The present study is
among the first to comprehensively assess resting-state functional (VBP) and structural
(VBM) findings in MDD both independently and in pooled multi-modal datasets.

Thus, the objective of this meta-analysis is to assess the spatial convergence of
brain abnormalities in MDD as detected by structural and resting-state functional
neuroimaging data. Our primary hypothesis is that MDD will demonstrate pathological
changes detectable across neuroimaging paradigms. We hypothesize localized
convergence of: (a) gray matter atrophy, (b) increased, and (c) decreased brain function
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in MDD patients relative to controls. We also hypothesize improved co-localization of
abnormalities, as evaluated through pooled datasets for secondary analysis (d). The
meta-analytic design and statistical thresholds for the present study were selected to
emulate Mller et al's 2017 study in order to compare the findings from task-based
versus task-independent investigations of MDD. We also hypothesize that accounting for

the clinical heterogeneity of MDD, by assembling patient subgroups (to the degree

possible through available literature), can enhance the convergence of identified brain
regions. Hypotheses confirmed by this meta-analytic approach, we would submit, should
be regarded as providing direction for further primary-data studies, rather than seen as

established conclusions.

Methods

Literature Search

A literature search of PubMed, Google Scholar, BrainMap (18, 43-45) and reference
tracing of previous meta-analyses was performed to identify MDD neuroimaging
experiments reporting either gray matter atrophy, or increased resting state function, or
decreased resting state function compared to healthy control subjects. MDD related
hypertrophy, a rare phenomenon occasionally reported in remitted MDD (relative to
acute MDD), was not included in this analysis. Voxel-based morphometry (VBM) studies
and resting state VPB studies of regional cerebral blood flow (rCBF), regional
homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF/fALFF), and
regional glucose metabolism were identified using various combinations of the search
terms major depressive disorder, major depression, depression, unipolar depression,
VBM, gray matter, rCBF, positron emission tomography (PET), single photon emission
computed tomography (SPECT), arterial spin labeling (ASL), ReHo, ALFF/fALFF,

glucose metabolism, brain activity, and resting state. The literature search was



completed January 2018. A study selection diagram for this meta-analysis is detailed in
Figure 1 and further details of the literature search are provided in Supplemental

Appendix 1.

Study selection criteria pertaining to indices of quality

Preliminary selection criteria required that studies be peer-reviewed, English language
neuroimaging reports. Studies identified outside of the BrainMap database were
reviewed by BrainMap team members and subsequently coded through Scribe and
submitted to the database (21). Standard expectations for publication in this field is for
application of motion correction, measures to limit motion during scan, and/or exclusion
of data that exhibited excessive motion during acquisition. Measure(s) for motion
correction utilized in each included study are tabulated in ST1 the Supplemental

Materials.

Study selection criteria relating to subjects

MDD patients from included studies were diagnosed using DSM-III (4 studies), DSM-IV
(85 studies), or ICD-10 (3 studies) evaluation. Only studies comparing patients in the
acute phase of MDD to healthy controls were included. Experiments including remitted
subjects (n=2) or any contrast other than MDD vs. healthy controls were excluded
(n=5)(Figure 1). Studies utilizing dual diagnosis patient populations with other major
medical iliness (e.g., MDD and hypothyroidism) or psychiatric comorbidities were
excluded (n=13). However, we allowed for the inclusion of studies in which partial
populations of the patient cohort had comorbidities (e.g., subset of MDD patients with
anxiety symptoms) with the criterion that MDD was the primary diagnosis. Studies with
strict exclusion criteria for psychiatric comorbidities were flagged for use in subsequent
meta-analytic grouping. We allowed for the inclusion of studies that featured patient

populations of varying medication status, but flagged those studies that recruited patient
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populations of specific medication status (all medicated, treatment naive, drug washout)
for subsequent meta-analytic grouping. We also flagged studies that recruited patient
populations of specific severity or disease onset (first episode, chronic/recurrent,

treatment resistant, adolescent, geriatric).

Study selection criteria relating to technical aspects

Studies of resting-state VBP included investigations of regional cerebral blood flow
(rCBF), regional cerebral glucose metabolism, regional homogeneity (ReHo), and
amplitude of low frequency fluctuations (ALFF/fALFF) using imaging methods of positron
emission tomography (PET), single photon emission computed tomography (SPECT),

and functional magnetic resonance imaging (fMRI) (Figure 1). Included resting-state

VBP studies only allowed for those that used voxel-wise whole-brain methods to

compare MDD patients to healthy control subjects. Thirty-six studies investigating

functional or effective connectivity were excluded from this meta-analysis because they
used regional sampling (N=26), used incompatible patient-group contrasts (N=2), were
review articles or meta-analyses (N=4), or were multivariate analyses only, without
mass-univariate analyses (N=2), and the remaining studies (N=2) were excluded
because as functional or effective connectivity studies they cannot be integrated in
current coordinate-based meta-analysis methods.

Included studies of gray matter volume utilized voxel-based morphometry
methods. Included studies only allowed for those that used voxel-wise whole-brain

methods to compare MDD patients to healthy control subjects. Studies using non whole-

brain methods, such as ROI or network restricted sampling, (n=19) were excluded.

Only studies reporting results as coordinates using standard reference space
(Talairach or Montreal Neurological Institute [MNI]) were included; those studies which

did not report results in the form of standardized coordinates (n=8) or did not report
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coordinate system used (n=1) were excluded. Coordinates were converted to Talairach
space for this analysis (46). To avoid repeated inclusion of the same patient populations
we carefully screened studies that pulled from open source or national data repositories
and excluded those that reported use of a patient cohort already included in this meta-
analysis (n=4).

Data non-redundancy is of crucial importance to avoid bias in meta-analytic

findings. To avoid inclusion of duplicate patient populations in the present study, we

performed several pre- and post hoc assessments. First, we carefully screened studies

that pulled from open source or national data repositories and excluded those that

reported duplicate patient cohorts (n=4). For multiple studies deriving from the same

research group, patient populations and reported coordinates were inspected to assess

potential redundancy (18). For studies reporting multiple contrasts from the same patient

population, only one contrast per patient population was used in each meta-analysis

(47). Post-hoc assessments were performed in cases when multiple experiments from

the same research group contributed to identified clusters. In these cases, leave-one-out

analyses were performed to assess potential redundant contributions to identified

clusters. In cases when potential patient overlap was indicated by leave-one-out

analysis, only the largest study was included for final meta-analysis. Another meta-

analysis best practice is to contact authors in confirm to data independence, however,

attempts to contact research groups of interest are not always successful.

All Effects Analysis

Coordinates from all included studies were collectively pooled to generate a unified All
Effects meta-analytic category. Coordinates from multiple experimental contrasts
obtained from the same subject group (such as studies that reported both locations of

gray matter atrophy and locations of increased or decreased function relative to controls
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in separate experiments) were concatenated to generate sign-independent foci groups
for each patient population tested. For detailed description, see SA1 for “Details of ALE
Analysis in Supplemental Materials. All patients, including both medicated and

unmedicated patients at time of scanning, were included in the All Effects analysis.

Meta-analytic Data Classes

To assess modality-specific contributions to findings from the All Effects analysis, input
data were grouped into primary and secondary meta-analytic groups for analysis.
Primary analyses included three single modality classes and two dual modality classes,
as follows. Three single modality classes were created by grouping experiments of
decreased gray matter volume in MDD patients compared to controls (VBMneg),
decrease in resting state function in MDD patients compared to controls (VBPneg), and
increased function in MDD patients compared to control subjects (VBPpos) (Figure 2-
items 1, 2, & 3 respectively); two dual modality classes were created by combining the
classes of rsFX-decrease and rsFX-increase with the GMV data (VBPneg + VBMneg
and VBPpos + VBMneg) (Figure 2- items 4 & 5, respectively). In studies that reported
both VBM and VBP changes in the same subject population, we included only the
coordinates reporting change in VBP in the pooled datasets (n=5). For initial analysis of
the five major meta-analytic classes, all available data (including patients of varying
medication status at time of scan) were included to test convergence of clinically

heterogeneous patient groups.

Patient Groupings
Studies were grouped for analysis into two tiers: All Effects (all patient types) and patient
subgroups. Studies were subgrouped as: a) drug/treatment naive MDD only; b) treated

MDD with drug washout before imaging, and c) MDD with no psychiatric comorbidities.
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For each sub-group, all five classes of experiments were analyzed, provided the number
of included experiments was sufficient for robust ALE calculation (Figure 2- items 6
through 18). Per Eickhoff et al 2016, the minimum number of experiments required for
robust ALE analysis is 17 (20).

Other subgroups attempted (first episode, chronic/recurrent, treatment resistant,
adolescent, geriatric) did not include a sufficient number of individual experiments for
meta-analysis (see Discussion). Drug washout groups also did not include a sufficient
number of experiments for standalone analysis. In an effort to maximize the use of
available information from individual studies, we combined the drug washout and drug

naive groups to assess potential effects from a medication-free group.

ALE meta-analysis

Activation likelihood estimation (ALE) (8,10,14,20)was performed using GingerALE
(version 3.0) software (48). The ALE algorithm was originally developed for use in task-
activation functional studies (12), but has undergone numerous revisions including
adaptations for use with VBM studies (47,49). ALE assesses spatial convergence of
reported findings against the null hypothesis that findings follow a random spatial
distribution rather than demonstrating statistically significant convergence at discrete
regions. The most current versions of ALE model reported coordinates, or foci, as 3D
Gaussian probability distributions to generate per-experiment modeled-activation (or
modeled-atrophy) maps (50). ALE derives full-width half-maximum for each Gaussian
distribution based on sample size, allowing experiments with larger subject sizes greater
statistical certainty. ALE generates a union map of all per-experiment MA maps and
tests for above-chance spatial convergence through a variety of available thresholding
options. A revised version of the algorithm (48) recommends either Family-wise error or

Cluster-level inference thresholding methods for robust analysis. The selected method
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for the present study, cluster-level inference, generates a simulated dataset of randomly
distributed foci based on characteristics of the input dataset for testing the null
hypothesis.

Results were thresholded for significance using cluster-level inference of P<0.05
with a cluster-forming threshold of P<0.001 to reflect the study design from Muller's 2017
study (6) and ALE best-practices (21, 51). ALE analysis was re-tested at cluster-level
inference of P<0.0027 (Bonferroni correction for multiple comparisons of 18 total meta-

analyses) to assess the robustness of identified clusters.

Noise simulation for estimation of file-drawer effect

Presently, the potential for unpublished null findings in the neuroimaging literature is not
accounted for in the ALE algorithm, as ALE’s focus is to assess convergence of non-null
findings of which a large portion are anticipated to be false positives (52). Potential
publication bias in the present study was evaluated through a modified version of the
Fail-Safe N method by Acar et al to estimate the robustness of identified results against
unpublished neuroimaging findings (15). A recent simulation utilizing the BrainMap
database identified that missing contrasts may be estimated at 6 per every 100
instances of reported findings (53). Thus, we re-tested convergent meta-analyses with
an additional 6% added noise to assess the robustness of identified clusters. Surviving

clusters were subsequently re-tested with higher rates of noise up to 30%.

Results

A total of 92 papers (97 studies) with 152 individual experiments comprising results from
2,928 patients were identified for inclusion in this meta-analysis. The number of
experiments included in each major meta-analytic category were: VBMneg: 43

experiments; VBPneg: 62 experiments; and, VBPpos: 47 experiments. ST1 & ST2 list all
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studies included in meta-analysis. SF1 shows the distribution of foci from each of the

major meta-analytic categories (see Supplemental Materials).

All Effects Analysis

The All Effects analysis comprised a total of 102 foci groups created from summed
results from all experiment types. This unified analysis identified a single region within
the left hippocampus as demonstrating convergent abnormality, listed in Table 2 and

shown in Figure 3.

Heterogeneous Group: All Patients

Among the classes of GMV, VBPneg, VBPpos, and VBPneg + VBMneg utilizing all
pooled patient data, none revealed any significant regions of convergent brain
abnormality. The class of VBPpos + VBMneg utilizing clinically heterogeneous patient
data identified consistent aberrant brain regions in MDD within the left hippocampus (as
identified in the All Effects analysis) and an additional region of significant convergence

in the subgenual cingulate cortex (listed in Table 2 and illustrated in Figure 3).

Patient Subgroups
Clinical subgroups that fulfilled n>17 experiments criteria included the categories of drug
naive patients (Drug Naive), drug naive and drug washout patients combined
(Naive+Washout), and those studies with strict exclusion criteria of comorbid psychiatric
disorders for MDD patients (Only MDD). See ST3-8 in supplement for lists of studies
included in each meta-analytic grouping.

A total of 13 clinical subgroups across the five meta-analytic classes included a
sufficient number of experiments to perform ALE analysis. Among the 13 subgroups,
only 5 yielded significant results (listed in Table 2 and illustrated in Figure 3). Clinical

subgroups within the VBPpos + VBMneg class identified significant convergence among
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the Drug Naive, Naive+Washout, and the Only MDD clinical groups. Consistent
abnormal brain areas identified within these clinical subgroups included regions of the
left hippocampus (as previously identified) and an additional region including areas of
the right amygdala and ventral anterior putamen. Clinical subgroups from the VBPneg
class identified significant regions among the Drug Naive and Only MDD clinical groups.
Areas identified within these clinical subgroups included three additional regions to those
previously identified, a region encompassing areas of the left middle occipital and left
inferior temporal gyri, a region within the left retrosplenial cortex, and a region within the

right putamen.

Convergence by Imaging Modality

Data from various imaging modalities contributed to the clusters identified through ALE
analysis, with no single modality being profoundly over-represented in any result from
the VBPpos + VBMneg class. Regions identified in clinical subgroups of the VBPneg
class were somewhat dominated by contributions from ALFF and ReHo experiments,
though this could be attributed to their overall representation within the dataset tested.

For detailed distributions, see ST9-11.

Noise Simulation

Each identified cluster was re-tested in meta-analyses with added noise (beginning at
6% noise) to assess robustness against potentially unpublished findings. Surviving
clusters were subsequently re-tested with higher rates of noise up to 30%. Table 2
details the Fail Safe N percentage (FSN %) of additional noise that must be added to
each meta-analysis to result in failure of convergence for previously identified clusters. In
general, noisier contrasts (e.g., All Effect and other groups including All Patients) are

less robust against the simulation of additional noise.
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Discussion
Our findings do not support our first three hypotheses, with no brain regions of significant
convergence arising from meta-analysis of (a) gray matter atrophy, (b) increased, or (c)
decreased brain function in MDD patients compared to controls. However, brain regions
demonstrating significant abnormality did arise from meta-analysis of pooled structure-
function findings in MDD, supporting our hypothesis of co-localized effects (d). We also
identified additional regions of convergence from meta-analysis of clinical subgroups
despite decreased sample size.

The present work, to our knowledge, is the first to comprehensively assess multi-

modal imaging data to investigate the convergence of voxel-based morphometry and

voxel-based pathophysiology findings in MDD. Regions of significant convergence

identified in this study include: the subgenual cingulate cortex, the left hippocampus, the
right amygdala/putamen, the left retrosplenial cortex, and the right middle
occipital/inferior temporal gyri. The brain regions identified in the present meta-analysis
are included in many current models of MDD pathology and treatment approaches.
Furthermore, our methods of largely pooling multi-modal data, and conversely
delineating data by available clinical details, improved convergence of results. Our
identification of brain regions demonstrating reliable abnormality in MDD, whereas
previous meta-analyses have failed to identify any disease-specific effects in MDD, is a
significant contribution to existing literature. We view these results as motivations for

refinement of future primary studies in MDD.

Identified Regions
Identification of consistent abnormality within the subgenual anterior cingulate cortex
(hereafter subgenual cingulate) in the present meta-analysis is a potentially important

finding for the current state of MDD research. The subgenual cingulate has been widely
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implicated in major depressive disorder as a regulator of mood (30, 31, 54-56), in the
processing of emotional stimuli (57-59) and as a target for network based treatments
such as deep brain stimulation (60- 63) and a downstream target for transcranial
magnetic stimulation (64-67). Reliable identification of the subgenual cingulate through
large-scale, multi-modal meta-analysis strongly supports further research of this region’s
role in MDD. Furthermore, the subgenual cingulate has not been reliably identified in
transdiagnostic meta-analyses such as the VBM-ALE analysis conducted by Goodkind
et al (17) (although subgenual cingulate does appear to be present in the all-groups
analysis; see Figure 2a). This distinctive finding arising from the present study suggests
that disease-specific effects, beyond transdiagnostic-only effects, are detectable in
neuroimaging data and warrants further exploration.

The left hippocampus was also identified in this study. Decreased hippocampal
volume has been observed in neuroimaging studies of MDD over the past 20 years (68-
72). Hypotheses of MDD-related hippocampal volume decline posit that the
hippocampus may be affected by stress (72) and may contribute to the cognitive (73)
and recollection memory deficiencies (74, 75) often present in MDD sufferers. The
hippocampus has also been implicated in MDD through disrupted hippocampal
connectivity effects on self-referential activity in MDD (76), and demonstrated conjoint
reductions in gray matter density and activation during working memory task in MDD
patients (77). The identification of the hippocampus in the present study is a notable
finding for both past and future investigations of this brain region’s role in MDD.

We also identified regions of the right amygdala and right putamen in the present
study. In recent investigations utilizing emotional valence paradigms, the amygdala has
demonstrated aberrant activation in MDD patients compared to healthy controls (78).
The amygdala has also demonstrated reliable volume differences in unmedicated MDD
patients relative to controls in a meta-analysis of 13 individual neuroimaging studies
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(79). The putamen, though its potential role is less well established in MDD, has also
demonstrated volumetric and shape abnormalities in untreated, first episode MDD (80).
The putamen has also demonstrated functional disruption in MDD through investigation
of the correlation between anhedonia severity and aberrant neural activity in response to
emotional stimuli (81). Our findings suggest the need for continued investigation of the
amygdala and putamen’s potential roles in MDD.

Other regions identified in this study including the left retrosplenial cortex
(encompassing regions within both BA 29 and BA 30), and an overlapping area of the
right middle occipital and inferior temporal gyri currently do not have well established
roles in current models of MDD. A recent, large study of MDD patients (n=336)
demonstrated that altered functional connectivity between the retrosplenial cortex and
other key brain regions may contribute to increased rumination symptoms in depression
(82). Brain perfusion deficits in occipital areas have been previously observed in
adolescent MDD patients, however, this study provided uncertain conclusions for the
region’s significance in MDD (83). More recently, increased functional connectivity with
the right middle occipital gyrus and the amygdala has been observed in association with
cognitive dysfunction in MDD (84). The right middle occipital/ inferior temporal gyri have
also demonstrated reduced cortical thickness in MDD patients compared to controls in a
recent large-scale study from the ENIGMA cohort (N=1902) (85). Though the role of
these regions in MDD is less well defined, results from the present study indicate that
further investigation of these regions’ potential role in the pathophysiology of MDD is

warranted.

Convergence from Patient Groupings
Separation of data into patient subgroups played a critical role in identifying additional

brain regions beyond those found in the more heterogeneous groups. To our knowledge,
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this is the largest meta-analysis in MDD that also included a sufficient number of
experiments to perform ALE analysis in subgroups. Our findings suggest that clinical
heterogeneity in MDD has observable neuroimaging effects, which warrant further
investigation.

Our study was limited by the recruiting and reporting methods employed at the
individual study level. Author-defined patient groups in the present study were largely
limited to medication status (treatment naive and drug washout groups). Other
categories including patient groups of specific severity (first episode, recurrent/chronic,
treatment resistant) and age of onset (geriatric or adolescent depression) did not yield
n>17 experiments (20) and were not further analyzed in our study. Of note, 60% of the
experiments included in the Drug Naive categories (VBPpos + VBMneg and VBPneg
Drug Naive groups) included experiments reporting findings from first-episode MDD
patients (see ST5 and ST8). Findings from these subgroups may indicate neuroimaging
effects specific to first-episode MDD, though we were not able to reliably test this effect
in the present analysis. As such, we strongly recommend future studies investigating this
potential effect.

More meaningful patient categories for future studies would ideally focus on
severity, duration, and treatment response in MDD. Of the 92 publications included in
the present analysis, 42 studies (51% of total) recruited mixed MDD patient populations
and pooled all patients into heterogeneous groups regardless of age of onset, disease
duration/severity, and number of previous episodes. It is a common convention in
neuroimaging publications to include patient demographic tables reporting the mean and
standard deviation of the aforementioned clinical features, though this is not
standardized or consistent among current literature. A central recommendation from the
present work is for standardized recruiting and reporting mechanisms to be adopted at
the individual study level. Due to the heterogeneous presentation of MDD, investigations

21



of more homogenous patient populations would both improve the interpretation of
findings at the individual study level and promote more meaningful investigations at the

meta-analytic level.

Convergence from Imaging Modalities

A central finding from the present study is the failure of convergence in the three single-
modality meta-analyses and successful convergence — albeit relatively weak -- in
pooled, multi-modality datasets. To our knowledge this is the largest meta-analysis in
MDD to date and the first to pool results across imaging modalities (VBM and VBP) in
this manner. Identification of convergent brain abnormalities across structural and
functional dataset supports our hypothesis for the co-localization of disease effects in
MDD. This co-localization, and/or longitudinal progression, of MDD-specific disease
effects are not well established in current literature and call for further investigation. As

the meta-analyses here were greatly facilitated by access to the collated and coded

VBM literature shared in the BrainMap database, we anticipate that expanding BrainMap

to include a sector sharing the resting-state VBP literature will be an important tool for

future meta-analyses.

Overall, convergent findings in the present meta-analysis are sparse compared
to the volume of input data (see SF1). Though the identification of regions of significant
convergence in the present study is a distinct advance from previous meta-analyses —
which failed to yield any convergent findings — the sparseness of present results is
nonetheless notable. In our largest analysis (All Effects) only 8 of 102 total experiments
contributed to the identified region of convergence. In our smallest analysis, (VBP-neg,
Drug Naive) only 3 of 20 total experiments contributed to the identified region (see ST12

for details). The small number of contributing experiments is a stark contrast to the large
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volume of findings reported at the individual study level. An interpretation of sparse
findings from the present study may be attributed to our analysis of exclusively voxel-
wise whole-brain studies. Conclusions from Sprooten et al's 2017 meta-analysis (which
included analysis of both whole-brain and ROI-based studies) found that though ROI-
based approaches seem more adept at yielding significant findings, this may be due to
confirmation bias stemming from a priori selection of brain regions for selective analysis.
As a result of this bias, Sprooten reported that there may be an artificial exaggeration of
particular brain regions’ role in psychiatric diseases and findings from ROI-based studies
should be interpreted with caution. Considering the broad neuroimaging literature, the
scarcity of results at the meta-analytic level underscores the impact of ROI-driven
findings (16), clinical heterogeneity (6), and overall replication problem in current
literature.

Finally, our findings suggest the possibility of improved convergence in task-
independent data over task-activation data. The lack of convergence in the 2017 task-
activation meta-analysis conducted by our group, Muller et al, was speculated to be due,
in part, to confounds introduced through inconsistency of the processes investigated in
various tasks (6). Further pitfalls of task-activation based studies include the
dependence of task-based paradigms on patient cooperation (86) and lack of diagnostic
specificity in findings from task-fMRI studies (16). The advantages of task-free
paradigms, especially for use in meta-analysis, however, are not definitively addressed

in current literature and warrants further investigation.

Limitations

A primary motivation for this meta-analysis was to compare task-independent findings to
those from Miller et al (our group, 6), which utilized task-activation data. Thus following
the All Effects analysis, we performed post-hoc analysis (without correction for multiple
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comparison) utilizing the same parameters from Miiller for significance threshold and
design for sub-meta-analyses (cluster-level inference of P<0.05 with a cluster-forming
threshold of P<0.001). We have also reported the clusters that prevail after Bonferroni
correction (cluster-level inference restricted to P<0.0027) in Table 2. The survival of two
regions identified from Drug Naive and Only MDD subgroups further supports our
conclusion that sample homogeneity in MDD plays a major role in convergence of
neuroimaging findings.

Another limitation of the present work is the inability of current CBMA methods to
integrate findings from functional and effective connectivity studies. Functional and

effective connectivity studies represent a rich corpus of literature: 36 were identified in

the literature search for the present work. However, the majority of these (26 of 36) were

regionally restricted, using ROIs for analysis or seeding, making them ineligible for ALE

CBMA. Only 2 resting-state functional connectivity studies were whole-brain and voxel-

wise. These were not included in the present analysis.

Finally, as previously discussed, recruitment of clinically heterogeneous MDD
populations at the individual study level substantially contributed to the limitations of the
present work. Whole-group analyses were limited by varied medication status and other
factors relating to clinical heterogeneity of MDD, which we tested for in subgroup meta-
analyses to the best of our ability. Fifty-one percent (51%) of all publications included in
the present analysis recruited mixed MDD patient populations and pooled all patients
into heterogeneous groups regardless of age of onset, disease duration/severity, and
number of previous episodes. As discussed in our Methods and Results, the testing of
subgroups based on MDD severity (first episode, chronic/recurrent, treatment resistant)
would have provided more clinically meaningful findings. As such, our findings from
clinical subgroups limited to medication status may not definitively indicate
neurobiologically homogenous patient characteristics and could, instead, be due to other
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methodological factors that we were not able to reliably test for. However, delineating
patient groups to the best of our ability did improve convergence of results and indicates
that clinical heterogeneity of MDD warrants further investigation in future neuroimaging

studies.

Conclusions

Our findings suggest that MDD exhibits a concordance of abnormality in both structure
(VBM) and function (VBP) in select brain regions. Our findings suggest the presence of
MDD-associated brain features, in contrast to lack of disease-specific findings from

previous transdiagnostic and MDD-specific meta-analyses. Per our successful

integration of VBP findings, we recommend the addition of a VBP sector to the BrainMap

database to facilitate future meta-analyses in this area of study. Finally, our analysis of

clinical heterogeneity within this meta-analysis suggests that diverse patient populations

may pose significant confounds in the neuroimaging findings in MDD.
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Figure Legends:

Figure 1- Study selection delineation diagram

A literature search identified an overall dataset of 92 independent publications reporting
152 experiments. *Note that 5 publications included investigations of both structural and
functional changes, contributing a total of 97 “studies”. Experiment modalities included:
regional cerebral blood flow (rCBF) studies utilizing single photon emission tomography
(SPECT), arterial spin labeling (ASL), and oxygen-15 positron emission tomography (O-
15 PET); regional homogeneity (ReHo); (frequency) amplitude of low frequency
fluctuations (ALFF/fALFF); fluorodeoxyglucose metabolism (FDG-PET); and voxel-based
morphometry investigations of gray matter volume.. Experiment classes included:
decreased gray matter volume relative to controls (VBMneg), decreased and increased

function relative to controls (VBPneg and VBPpos, respectively).

Figure 2- Meta-Analytic Groups Tested. First, a preliminary All Effects analysis of
unified results across all imaging modalities was preformed. Results from all
experiments were concatenated into unified disease-control contrast groups of
VBMneg+VBPpos+VBPneg. Next,18 different meta-analyses were performed including
the five major meta-analytic classes of decreased gray matter volume relative to controls
(VBMneg), decreased (VBPneg) and increased (VBPos) function relative to controls;
each rsFX group pooled with the GMV group (VBPneg + VBMneg and VBPpos +
VBMneg), and subgroups of each meta-analytic class comprised of specific clinical

populations where number of qualifying experiments exceeded 17.

Figure 3- Abnormal regions identified. Abnormal regions identified from All Effects
analysis and meta-analytic groupings of: combined VBPpos and VBMneg, and VBPneg.

Clinical subgroupings which also identified abnormal regions are shown.
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