000874314 001__ 874314
000874314 005__ 20240610115441.0
000874314 0247_ $$2doi$$a10.1063/1.5119778
000874314 0247_ $$2ISSN$$a0021-9606
000874314 0247_ $$2ISSN$$a1089-7690
000874314 0247_ $$2ISSN$$a1520-9032
000874314 0247_ $$2Handle$$a2128/24441
000874314 0247_ $$2altmetric$$aaltmetric:76393063
000874314 0247_ $$2pmid$$apmid:32061230
000874314 0247_ $$2WOS$$aWOS:000515566000002
000874314 037__ $$aFZJ-2020-01362
000874314 082__ $$a530
000874314 1001_ $$0P:(DE-HGF)0$$aSoleymani, Fatemeh A.$$b0
000874314 245__ $$aDissipative particle dynamics with energy conservation: Isoenergetic integration and transport properties
000874314 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2020
000874314 3367_ $$2DRIVER$$aarticle
000874314 3367_ $$2DataCite$$aOutput Types/Journal article
000874314 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583235337_23481
000874314 3367_ $$2BibTeX$$aARTICLE
000874314 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874314 3367_ $$00$$2EndNote$$aJournal Article
000874314 520__ $$aSimulations of nano- to micro-meter scale fluidic systems under thermal gradients require consistent mesoscopic methods accounting for both hydrodynamic interactions and proper transport of energy. One such method is dissipative particle dynamics with energy conservation (DPDE), which has been used for various fluid systems with non-uniform temperature distributions. We propose an easily parallelizable modification of the velocity-Verlet algorithm based on local energy redistribution for each DPDE particle such that the total energy in a simulated system is conserved up to machine precision. Furthermore, transport properties of a DPDE fluid are analyzed in detail. In particular, an analytical approximation for the thermal conductivity coefficient is derived, which allows its a priori estimation for a given parameter set. Finally, we provide approximate expressions for the dimensionless Prandtl and Schmidt numbers, which characterize fluid transport properties and can be adjusted independently by a proper selection of model parameters. In conclusion, our results strengthen the DPDE method as a very robust approach for the investigation of mesoscopic systems with temperature inhomogeneities
000874314 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000874314 588__ $$aDataset connected to CrossRef
000874314 7001_ $$0P:(DE-Juel1)130920$$aRipoll, Marisol$$b1
000874314 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2
000874314 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b3$$eCorresponding author
000874314 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5119778$$gVol. 152, no. 6, p. 064112 -$$n6$$p064112$$tThe journal of chemical physics$$v152$$x1089-7690$$y2020
000874314 8564_ $$uhttps://juser.fz-juelich.de/record/874314/files/1.5119778.pdf$$yPublished on 2020-02-13. Available in OpenAccess from 2021-02-13.
000874314 8564_ $$uhttps://juser.fz-juelich.de/record/874314/files/1.5119778.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-13. Available in OpenAccess from 2021-02-13.
000874314 909CO $$ooai:juser.fz-juelich.de:874314$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130920$$aForschungszentrum Jülich$$b1$$kFZJ
000874314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000874314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b3$$kFZJ
000874314 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000874314 9141_ $$y2020
000874314 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874314 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874314 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000874314 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2017
000874314 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874314 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874314 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874314 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874314 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874314 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874314 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874314 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000874314 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874314 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000874314 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874314 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874314 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000874314 9801_ $$aFullTexts
000874314 980__ $$ajournal
000874314 980__ $$aVDB
000874314 980__ $$aUNRESTRICTED
000874314 980__ $$aI:(DE-Juel1)ICS-2-20110106
000874314 981__ $$aI:(DE-Juel1)IBI-5-20200312
000874314 981__ $$aI:(DE-Juel1)IAS-2-20090406