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ABSTRACT
Simulations of nano- to micro-meter scale fluidic systems under thermal gradients require consistent mesoscopic methods accounting for
both hydrodynamic interactions and proper transport of energy. One such method is dissipative particle dynamics with energy conservation
(DPDE), which has been used for various fluid systems with non-uniform temperature distributions. We propose an easily parallelizable
modification of the velocity-Verlet algorithm based on local energy redistribution for each DPDE particle such that the total energy in a
simulated system is conserved up to machine precision. Furthermore, transport properties of a DPDE fluid are analyzed in detail. In particular,
an analytical approximation for the thermal conductivity coefficient is derived, which allows its a priori estimation for a given parameter
set. Finally, we provide approximate expressions for the dimensionless Prandtl and Schmidt numbers, which characterize fluid transport
properties and can be adjusted independently by a proper selection of model parameters. In conclusion, our results strengthen the DPDE
method as a very robust approach for the investigation of mesoscopic systems with temperature inhomogeneities.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5119778., s

I. INTRODUCTION

Simulations of mesoscopically structured systems, rang-
ing from supra-molecular assemblies and artificial self-propelled
microswimmers to the flow of biological cell suspensions in complex
environments, have become important in studies of a broad vari-
ety of biophysical, biomedical, and engineering applications.1–4 This
has driven a rapid development of mesoscopic simulation methods
employed to advance our understanding of such systems.5,6 Meso-
scopic methods usually neglect molecular details but retain features
of suspended particles, such as deformability, inter-particle forces, or
thermal fluctuations. Examples of mesoscopic methods are the lat-
tice Boltzmann method (LBM),7–9 multiparticle collision dynamics
(MPC),6,10–12 and dissipative particle dynamics (DPD).13–15

Studies of many interesting phenomena require modeling of
non-isothermal environments, where temperature gradients are
significant, and transport of energy might be relevant. Examples
include heat transfer,16 thermodiffusion in binary mixtures,17–20 and

colloidal thermophoresis.21–25 Such problems generally rely on sim-
ulation methods which are able to represent the system in a micro-
canonical ensemble where energy is exactly conserved. Various non-
isothermal systems have been modeled using molecular dynam-
ics,19,26 thermal LBM,27,28 MPC,29–31 and an energy-conserving ver-
sion of the Monte Carlo method.32 The original DPD method13,14

is isothermal and has been extended to account for energy con-
servation (DPDE).33,34 DPDE has successfully been applied to sim-
ulate a number of thermal gradient problems, such as natural35

and forced convection,36 temperature-dependent fluid properties,37

droplet flows,38 and thermophoretic Janus colloids.23

Several algorithms have been employed in DPDE, includ-
ing velocity-Verlet (VV)-based schemes39–42 and Shardlow-splitting
(SS)-based algorithms.37,41–46 One of the problems of many inte-
gration schemes is that they yield a significant net energy drift,
rendering long-time integration difficult. In particular, VV-based
schemes41,42 are prone to strong energy-drift problems, which can
be reduced by decreasing the integration time step. However,
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this makes the method less attractive as it becomes more CPU-time
consuming. SS-based algorithms37,41–46 exhibit much less severe
energy-drift problems and, therefore, allow larger integration time
steps. Nevertheless, SS schemes are generally more expensive com-
putationally than simple VV algorithms and are difficult to paral-
lelize and to utilize multithreading.42–45 Another problem of many
algorithms is their stability for large time steps or low heat capaci-
ties, which generally occurs due to a possible appearance of negative
internal energies. This drawback has recently been eliminated by
introducing a Metropolis–Hastings procedure for stochastic inter-
actions within the SS algorithm.44,45 Furthermore, it is not fully
clear whether the DPDE method can faithfully represent impor-
tant features (e.g., thermal diffusivity and momentum transport)
of real fluids as the transport properties of a DPDE fluid are not
straightforwardly predetermined.

In this paper, we suggest a modification of the well-known VV
algorithm by local energy redistribution (LER), which results in the
conservation of total energy of a simulated system up to the order of
machine precision and completely eliminates energy drift. Within
the LER algorithm, changes in kinetic and potential energies are
counterbalanced by the internal energy at the level of each DPDE
particle such that the local energy is conserved with a good accuracy,
while the total energy is conserved exactly. We investigate the per-
formance of the LER algorithm for several choices of conservative
interactions between particles, which affect the fluid compressibil-
ity. Furthermore, an analytical approximation of the overall thermal
conductivity κ of a DPDE fluid is derived, which allows its direct esti-
mation for selected simulation parameters. The thermal conductiv-
ity is governed by two contributions: (i) direct heat conduction and
(ii) diffusive heat transport, whose relative ratio can be estimated
from the analytical approximation of κ. Finally, we study the dimen-
sionless Prandtl and Schmidt numbers characterizing fluid transport
properties and show that they can independently be adjusted to
match those of real fluids.

The paper is organized as follows. Section II provides details
about the DPDE method and the LER integration algorithm, with
the details given in the Appendix. In Sec. III, the DPDE method
is validated and its performance is studied under thermal gradient
conditions. In Sec. III, we also derive the analytical approximation
of the fluid thermal conductivity coefficient and discuss transport
properties of simulated liquids in comparison with real fluids.

II. METHODS AND MODELS
A. DPDE governing equations

In the same spirit as in the isothermal DPD method,13,14,47

DPDE particles are mesoscopic entities, which represent small fluid
volumes containing numerous atoms or molecules. The N con-
stituent particles are characterized by their positions ri and veloci-
ties vi. Furthermore, each of the DPDE particles is characterized by
an additional variable accounting for the internal energy ϵi of the
small fluid volume. This energy is connected to an internal temper-
ature T(ϵ) via an entropy function S(ϵ) or, equivalently, the den-
sity of internal states, as ∂S(ϵ)/∂ϵ = 1/T(ϵ), which corresponds to
the related thermodynamic force.48 A simple choice for the entropy
function is that of an ideal solid, i.e., S(ϵ) = cv ln(ϵ) + const, where
cv is the heat capacity at constant volume. This choice results in

a straightforward linear relation between internal energy and tem-
perature as ϵi = cvTi.33,34,49,50 The dimensionless heat capacity cv/kB
is generally a large number since it is a measure of the size of a
DPDE particle which characterizes the number of internal degrees
of freedom for this particle.

Time evolution of particle characteristics (i.e., position, veloc-
ity, and internal energy) is governed by Newton’s equation of motion
and heat equation,

dri
dt
= vi,

dvi
dt
=

1
mi

Fi, cv
dTi

dt
= qi. (1)

Here, mi is the particle mass, Fi is the total force, and qi is the total
heat rate.

The force Fi on particle i is a sum of three pairwise interactions
with neighboring particles j given by

Fi = ∑
j≠i
(FCij + FDij + FRij). (2)

The three contributions correspond to the conservative, dissipative,
and random forces which take the form

FCij = aijω
C
(rij)r̂ij,

FDij = −γijω
D
(rij)(vij ⋅ r̂ij)r̂ij,

FRij = σijω
R
(rij)ξijΔt−1/2r̂ij.

(3)

Here, rij = ri − rj, vij = vi − vj, rij = |rij|, r̂ij = rij/rij, and Δt is the
integration time step. The conservative-force coefficient aij controls
fluid compressibility. The coefficients γij and σij represent friction
and noise amplitudes that are connected to each other through the
fluctuation-dissipation relation33,34,51 as

γij =
σ2
ij

4kB
(

1
Ti

+
1
Tj
) (4)

with the Boltzmann constant kB. The random force is determined by
ξij, a symmetric Gaussian random variable (i.e., ξij = ξji) with zero
mean and unit variance. Generally, σij is selected as a constant and
γij is calculated according to Eq. (4). The interaction strengths in
Eq. (3) are further controlled by the weight functions which are most
commonly chosen as

ω(rij) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

(1 −
rij
rc
)

2s
, rij ≤ rc,

0, rij > rc,
(5)

where rc is the cutoff radius and s > 0 is an exponent controlling the
interaction strength. While the dissipative and the random functions
are linked via the fluctuation-dissipation theorem as ωD

= (ωR
)

2

= ω,14 the choice of the conservative function ωC is independent.

B. Heat conduction
The time evolution of the internal temperature (or the cor-

responding internal energy) is governed by the third equality in
Eq. (1). The amount of heat that each particle receives (or loses) from
its close neighbors per unit time can be expressed as

qi = ∑
j≠i
(qHCij + qVHij ), (6)
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where qHCij corresponds to heat conduction and qVHij corresponds to
viscous heating.

DPDE particles are characterized by an intrinsic temperature
such that every pair of particles is expected to exchange some heat
by conduction, a process which has to be explicitly modeled. A com-
monly employed heat-conduction term33,34 is proportional to the
difference in thermodynamic forces (i.e., in the inverse tempera-
tures) as

qHCij = κijω
H
(rij)(

1
Ti
−

1
Tj
) + αijζij[ωH

(rij)/Δt]
1/2

, (7)

where κij and αij are heat-conduction coefficients of the determin-
istic and random terms, respectively. To guarantee energy conser-
vation, each term in Eq. (7) needs to be antisymmetric under par-
ticle interchange. The deterministic term is antisymmetric by con-
struction, and the fluctuating factor ζ ij is defined as an antisym-
metric Gaussian variable with zero mean and unit variance such
that ζ ij = −ζ ji. Note that ζ ij is completely uncorrelated with ξij.
Detailed balance imposes the relation between the deterministic and
fluctuating terms. Thus, the heat-conduction coefficients are con-
nected by the fluctuation-dissipation relation α2

ij = 2kBκij, where
κij = κ0c2

v(Ti + Tj)
2
/4kB with the constant nominal strength κ0.

The weight function ωH can generally be chosen independent of the
other weight functions, but for simplicity, the standard selection is
ωH = ωD.

Thermodynamic consistency of the qHCij expression, with the
existence of an H-theorem and a proper equilibrium distribution,
has been shown theoretically.33,34,51 In particular, it has been shown
that the equilibrium distribution function is proportional to the
degeneracy factor g(ϵi) ≡ exp[s(ϵi)/kB] ∝ ϵcv/kBi or the num-
ber of internal states with energy ϵi. The single-particle equilibrium
distribution in the canonical ensemble is then

ψeq(ϵi) =
1

Z(β)
ϵcv/kBi exp[−βϵi], (8)

where β = 1/kBT is the inverse of the macroscopic temperature and
Z(β) is the normalization factor or the corresponding single-particle
partition function. This distribution function was already tested in
simulations.49

C. Viscous heating: Isoenergetic integration
The second contribution to the heat transport in Eq. (6) is the

viscous-heating term qVHi = ∑i≠j q
VH
ij , which represents the work

done by conservative and dissipative forces. Thus, it accounts for the
variation in mechanical energy as qVHi = δEmec,i = δPi +δKi, where Pi
and K i are the potential and kinetic energies whose changes can be
calculated as

δPi = −∑
i≠j

FCij ⋅ δrij,

δKi = m∑
i
vi ⋅ dvi + m∑

i
dvi ⋅ dvi. (9)

The second sum in the variation of kinetic energy is a consequence of
the stochastic contribution. By considering the equation of motion
(1) and the form of the DPD forces in Eq. (3), the change in
mechanical energy can be expressed explicitly through the DPD

force parameters.33,34 In fact, such non-trivial expressions for qVHi
are often integrated directly using various existing methods such
as SS or Trotter schemes.52–54 However, we do not use such an
expression but calculate qVHi by a direct tracking of changes in the
kinetic and potential energies for every particle at each time step;
see the Appendix for details about the LER algorithm which is
implemented by our group within the LAMMPS package.55 In this
way, the viscous-heating contribution is redistributed into the inter-
nal energy, which results in local energy conservation with a good
accuracy, while the total energy of a simulated system is exactly
conserved. This idea is similar to the VV scheme with energy rein-
jection.42 Furthermore, a study41 focused on the performance of dif-
ferent variants of the SS scheme has also mentioned a similar idea,
but the energy redistribution has been implemented at the level of
particle pairs in contrast to the single-particle level proposed here,
and the contribution of potential energy was not considered. A fur-
ther important advantage of the LER algorithm is that it allows much
more efficient parallelization and multithreading than more sophis-
ticated algorithms, such as SS or Trotter schemes,42,43 making it a
powerful candidate for applications.

D. Simulation setup and parameters
Simulation units are selected to be the particle mass m = 1, the

length of the cutoff radius rc = 1, and the unit of energy kBT0 = 1 with
the reference temperature T0. In this way, τ = rc

√

m/(kBT0) = 1
corresponds to the unit of time. The default average tempera-
ture and number density of fluid particles are set to T̄ = T0
and ρ̄ = 3/r3

c , respectively, unless specified otherwise. The DPDE
forces employ ωC = ω with s = 0.5 as used commonly in DPD,
σ = 3kBT0

√

τ/rc, and ωD = ωH = ω with s = 0.25 whose value has
been shown to increase the fluid viscosity in comparison with a fre-
quently used value of s = 1.56,57 The specific heat is set to cv = 200
kB, and the nominal strength of interparticle heat conductivity is
κ0 = 0.001/τ.

The conservative-force coefficient aij is typically taken as a
constant in DPDE, following a similar choice in the classical DPD
method. When a constant aij is employed, the particle density shows
to be nearly independent of temperature. To better represent fluid
properties, it was suggested to consider aij with an explicit tem-
perature dependence.37,58 We consider three cases: (i) the ideal-gas
equation of state case with aCij = 0, (ii) the case with a constant coef-
ficient aCij = a0, and (iii) the case with a temperature-dependent
coefficient aTij = a0(Ti + Tj)/2T̄, for which the default constant
parameter is taken to be a0 = 15kBT0/rc. Note that the temperature-
dependent repulsion amplitude can be rationalized in terms of
multi-body DPD59,60 since temperature changes affect local particle
density. Following the discussion in Refs. 15 and 61, the fact that the
repulsion amplitude has a linear dependence on the internal tem-
perature and is symmetric under particle interchange ensures the
existence of a well-defined potential for this choice of conservative
interactions.

The default choice for the conservative-force coefficient
employed in simulations is aT if not stated otherwise. A default
time step corresponds to Δt = 0.005τ. Simulations are performed
with periodic boundary conditions in a domain with dimensions
Lx = 20rc, Ly = Lz = 10rc. All other parameters will be specified in
the text whenever necessary.
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III. RESULTS
A. Homogeneous temperature
1. Total energy conservation

One of the main issues of the DPD method is the establish-
ment of an efficient and consistent algorithm for the integration of
the DPD equations, which has been and still is treated in a large
number of related studies.58,62–66 Although DPDE was proposed as
an energy-conserving method, so far all investigations, in which
the viscous-heating term qVHij is calculated explicitly through the
system parameters,37,41–43,52,53,67 have reported different deviations
from energy-conserving behavior for various time steps and inte-
gration schemes. For example, Homman et al.42 reported an energy
drift within a range 1–2 × 10−5kBT0 for Δt = 0.006τ and a total inte-
gration time of 10τ, while Lísal et al.41,43 found an energy drift on
the order of 10−4, even though the viscous heat rate was not explic-
itly calculated. Furthermore, Li et al.37 demonstrated fluctuations in
the total energy on the order of 10−3kBT0, even though no significant
energy drift within the total integration time was detected.

As explained in Sec. II C, the LER algorithm adopted here is
fundamentally different from those used previously since the vari-
ation of energy per particle is directly monitored and used for the
calculation of the viscous-heating term, avoiding its approximation
in terms of parameters such as the relative velocities or positions of
all neighboring particles. We have verified the conservation of total
energy for a range of time steps Δt/τ ∈ [0.005; 0.05] and for two sys-
tem sizes: the one with default values and another one approximately
ten times larger. Maximum error and fluctuations in the total energy
are found to be on the order of 10−14kBT0, which demonstrates that
the LER algorithm conserves the total energy by construction (see
the Appendix), and therefore, the error in total energy is directly
associated with the machine precision.

Note that in order to evaluate the total energy, the mechani-
cal energy needs to be considered together with the internal energy
UI . The internal energy constitutes the dominant contribution to
the total energy since UI ≈ NcvT0 and cv ≫ kB, and the kinetic
energy is K ≃ 3NkBT0/2 (i.e., UI/K ≃ 2cv/3 kB), while our simulations
show that the potential energy is P ≃ 2K for the default conservative
interactions.

2. Temperature definition
In the DPDE method, three temperatures can be defined which,

for consistency, should be equivalent. The internal temperature TI is
computed by averaging over the internal particle temperatures ⟨Ti⟩;
the kinetic temperature TK is calculated by averaging the kinetic
energy of all particles as ⟨miv

2
i /3⟩, and they can be compared to the

reference temperature T0 as TI = T0 = TK(1 − kB/cv)−1. The dif-
ference of the order O(kB/cv) between TI and TK is due to an addi-
tional degree of freedom from the fluctuations in internal energy.40,41

Comparison of the simulation results is shown in Figs. 1(a) and 1(b)
for two different time step values. Δt = 0.01τ results in consistent
internal and kinetic temperatures, while Δt = 0.05τ leads to val-
ues of TI and TK which differ by 3%–5%, indicating that this time
step is too large. For comparison, the SS algorithm leads to a some-
what smaller temperature difference of 1%–2% for Δt = 0.05τ but
shows a relatively strong energy drift. For this test, the SS algorithm
implemented in the LAMMPS package55 has been employed.

FIG. 1. [(a) and (b)] Comparison of internal T I /T0 and kinetic TK /T0 tempera-
tures for two different time steps as a function of position within the simulation
domain. (c) Radial distribution function (RDF) of fluid particles for various time
steps, showing that for Δt ≲ 0.02τ, the RDF is independent of the time step.

Figure 1(a) also shows that the variance of kinetic temperature
is markedly higher than that of the internal temperature, which can
be rationalized by differences in temperature distributions. The vari-
ance of TK is determined by the Maxwell–Boltzmann distribution
of particle velocities and by the number of particles used for TK
averaging.68 The variance of TI is given by σ2

TI
= σ2

ϵ /c2
v , where σ2

ϵ
is the variance of internal energy, which can be estimated from the
distribution of ϵ in the micro-canonical ensemble.69

Although we already mentioned that the values of cv are gen-
erally expected to be large, we further probe the limit of the LER
algorithm for low cv values. Our tests show that LER might become
unstable for cv/kB < 20 due the appearance of negative internal ener-
gies. In addition, for cv/kB ≲ 50, TK appears to be slightly lower (by
1%–2%) than TI , while this difference becomes negligible for cv/kB ≳
50. Therefore, it is recommended to employ the LER algorithm for
simulations with cv/kB ≳ 50.
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3. Radial distribution function
The measurement of the radial distribution (RDF) function is

another test to elucidate the appropriateness of the employed param-
eters, in particular, the time step. Figure 1(c) demonstrates that
Δt ≲ 0.02τ leads to time step-independent RDF within the fluid.
Even though Fig. 1 presents results only for the aT interaction model,
other combinations of the conservative-force coefficient have also
been tested, resulting in a similar conclusion. Note that the recom-
mended values of the time step are about one order of magnitude
larger than those employed with previous integration methods.37

B. Temperature gradients
Different strategies have been employed to simulate thermal

gradients,17,19,70 which can be used in DPDE as well. One of these
methods, the velocity exchange algorithm,19 exactly conserves the
overall energy by interchanging the velocity of the fastest particle
within a pre-determined cold slab with the slowest particle of a hot
slab. Alternatively, the average temperature of two pre-defined layers
(or regions) can be set to two unequal values.71,72 Furthermore, sim-
ulations with periodic boundary conditions and temperature gradi-
ents often employ hot and cold slabs, in which heat is, respectively,
injected and removed, mimicking the contact with reservoirs at dif-
ferent temperatures. In our simulations, heat is injected into the hot
slab (10 < x/rc < 10.5) at a constant heat rate of 2J0A, where J0 is
the heat flux and A = LyLz is the cross-sectional area of the domain,
while heat is removed from the cold slab (0 < x/rc < 0.5) at the same
rate. Thus, a fixed amount of heat Q = 2J0AΔt is uniformly added
or removed every time step from the internal energy of all particles
in the volume of a given slab. The factor 2 is due to periodic bound-
ary conditions such that the injected heat Q travels to the left and to
the right from the hot slab. Hence, every particle in the hot (cold)
slab receives (losses) a heat of Q/Nh (Q/Nc) per time step, where Nh
(Nc) is a time-varying number of particles in the hot (cold) slab. In
this way, the total energy in the simulation domain is conserved and
the temperature gradient can be indirectly regulated by changing the
heat rate or flux.

1. Equation of state
First, we test the development of temperature gradient for the

three different choices of conservative interactions, using aT and aC

models with a0 = 15kBT0/rc and a model with a0 = 0. In the case
a0 = 0, the fluid has an ideal-gas equation of state with p = ρkBT,
where p is the pressure and ρ is the density of the fluid. For com-
parison, isothermal DPD with the aC model yields an equation of
state where pressure varies quadratically in fluid density.58 The three
conservative-force cases are tested for the same linear temperature
profile, which is acquired by properly adjusting J0. Thus, the pro-
file T(x)/T0 = 0.018x/rc + 0.91 with Tmin/T0 ≈ 0.928 at x/rc = 1 and
Tmax/T0 ≈ 1.072 at x/rc = 9 is obtained for the models aT , aC, and
a0 = 0, with J0τr2

c /(kBT0) = 2.7, 2.75, and 2.8, respectively. Figure 2
presents steady-state density profiles for the different models with
the same temperature profile, which are nearly linear for all cases.
The strongest gradient in fluid density is found for the a0 = 0 model,
as expected for a fluid with the ideal-gas equation of state, while the
aC model leads to the least variation in ρ. This means that the aC

model yields a nearly incompressible fluid, while the aT model shows

FIG. 2. Steady-state density profiles for three different conservative-force models
(see Sec. II D) with the same imposed thermal gradient.

certain compressibility, in qualitative agreement with simple fluids
such as water.

2. Heat conductivity
The Fourier law of heat conduction in one dimension,

J =
1
A

dQ
dt
= κ

dT
dx

, (10)

allows the determination of the thermal conductivity κ in simula-
tions with fixed J0 by analyzing the resulting temperature gradient.
Figure 3 shows three temperature profiles for different J0. All tem-
perature curves exhibit a nearly linear dependence; however, for
the highest J0 value, the simulation data slightly deviate from the

FIG. 3. Temperature profiles for three different J0τr2
c /(kBT0) values. The inset

shows deviations of the temperature profile from linear (LF) and quadratic (QF) fits
in percents for two different heat flux values.
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corresponding linear fit. The deviation of simulated temperature
from a linear fit is quantified in the inset of Fig. 3. The temperature
profile for J0τr2

c /(kBT0) = 10 can be fitted well by a quadratic func-
tion. Nevertheless, the deviation of temperature from the linear fit is
small and remains within 2%. A large enough heat flux clearly leads
to a strong temperature gradient with local changes in fluid density
and structure characterized by RDF. This in turn may affect local
heat conductivity as it depends on inter-particle distances, resulting
in a slightly non-linear temperature profile.

Figure 4(a) presents the dependence of heat conductivity κ
on the average fluid temperature and density for the reference
parameters, using a small value of J0τr2

c /(kBT0) = 0.25. Ther-
mal conductivity increases when average fluid density or tem-
perature increases, which is qualitatively consistent with other
experimental and theoretical investigations.73–76 We will discuss

FIG. 4. (a) Normalized heat-conduction coefficient κ/κr as a function of tem-
perature and density for relatively weak thermal gradients (ΔT /T0 ≲ 0.05). The
normalizing factor κr = 146 kB/(τrc) is calculated for the reference values ρ̄ = 3/r3

c
and T̄ = T0. Dashed dotted lines and the value of κr are obtained from the analyt-
ical prediction in Eq. (22). (b) Normalized heat-conduction coefficient as a function
of the input heat flux for different conservative-force models.

these dependencies in more detail in Sec. III D, where an analyti-
cal expression for κ is derived. Figure 4(b) shows the dependence
of thermal conductivity κ on heat flux J0 for different models of
conservative interactions. Since κ depends on local temperature and
density, it is obtained here by fitting temperature profiles within a
small region where particle densities and temperatures are very close
to their average values. A temperature-dependent conservative-force
coefficient aT results in slightly smaller heat conductivities in com-
parison with the constant conservative force with aC. Heat conduc-
tivity exhibits a slight decrease with increasing input heat flux J0.
However, this decrease is within 3%–4%, indicating that κ in the
DPDE method is rather robust and nearly independent of the heat
flux.

The fact that the DPDE model has a finite value of heat con-
ductivity implies that only a limited amount of heat can be trans-
ferred, which determines a maximum heat flux Jmax. This means
that if lager heat fluxes are applied, some parts of the system may
attain a negative internal temperature. This is clearly incorrect, as
noted already in Ref. 49, and leads to the simulation instability. The
maximum heat flux Jmax depends very strongly on κ0, especially in
the cases where the energy transport by heat conduction dominates
over the diffusive transport, and indirectly also on other system
parameters, which are more important in cases when the diffusive
transport is high (e.g., for low κ0 values and moderate temperature
gradients).

3. Temperature relaxation after sudden
localized heating

Another test of the LER algorithm corresponds to a sudden
heating of the middle slab 5 < x/rc < 15 to the temperature T/T0
= 1.5 (i.e., a 50% temperature increase), followed by temperature
relaxation. Figure 5 shows a comparison of the evolution of tem-
perature profiles for the SS and LER algorithms (TI is shown) and a

FIG. 5. Evolution of temperature profiles after a sudden heating of the middle slab
5 < x/rc < 15 to T /T0 = 1.5 (i.e., a 50% temperature increase) for the SS and LER
algorithms (T I is shown) in comparison with a solution from the heat equation.
Each profile is generated from 12 independent simulations, where each point is
averaged over 500 time steps. Colors represent averages over the time intervals
[0; 2.5τ]—red, [7.5τ; 10τ]—green, [15τ; 17.5τ]—blue, and [22.5τ; 25τ]—black.
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solution of the heat equation. Here, we employ a model with a con-
stant conservative coefficient aC = a0 andωD =ωH =ωwith s = 1. For
the heat equation, fluid conductivity has been set to κ = 300 kB/(τrc),
which was calculated from a simulation of the DPDE fluid under
temperature gradient with T̄/T0 = 1.25. The results in Fig. 5 show an
excellent agreement between the two DPDE integration algorithms
and the solution of the heat equation, which further supports the
validity of the proposed LER algorithm. Note that under extreme
local temperature jumps, the two integration algorithms may lead
to distinct temperature relaxation behaviors; however, it is not clear
whether any of these algorithms give correct results in such cases as
there are no reference solutions.

C. Energy transfer
To investigate the mechanisms for heat transfer within a DPDE

fluid in more detail, we define a reference plane to monitor the
involved energy fluxes. This plane is perpendicular to the gradient
direction and can be placed at different positions between the hot
and cold slabs. Given a heat flux J0, energy conservation guarantees
that the total energy flux through a plane at any position is constant,
Jtot = J0. Four different energy fluxes can be distinguished from two
different types. One type is a heat-conduction flux, JC, which cor-
responds to the exchange of internal energy between fluid particles
located at different sides of the plane within distances smaller than
the cutoff radius rc, according to the qHC term in Eq. (7). Another
contribution is the diffusive flux JD of energy, realized by fluid parti-
cles which actually cross the plane. Mass conservation enforces that
the mass flux through the plane is on average zero, but due to the
externally imposed temperature gradient, particles on the hot side
are more energetic than on the cold side which results in a diffu-
sive transfer of energy. In this way, diffusive energy transfer includes
potential, kinetic, and internal contributions.

Figure 6 shows various contributions to the total energy flux
through a plane in the hot area at x = 8rc. The major contribu-
tions correspond to the fluxes of particle internal energy, JC and JU ,

FIG. 6. Energy fluxes through a reference plane at x = 8rc (hot area) as a function
of time: conductive flux of internal energy JC, and the diffusive fluxes of internal
JU , potential JP , and kinetic JK energies. All contributions are normalized by J0,
which is J0τr2

c /(kBT0) = 6 here.

while the diffusive fluxes from the potential and kinetic energies,
JP and JK , are very small. This can be intuitively understood since
the ratio between the particle internal energy and potential/kinetic
energy is proportional to cv, which is cv/kB = 200 here. Note that in
this example, the diffusive flux of internal energy JU is larger than
the conductive flux JC and that Jtot = JC + JD, with JD = JU + JP + JK .
Fluctuations of the total flux around the input value are due to the
statistical error of the measurement procedure.

Figure 7(a) shows the conductive flux JC for two conservative-
force models through a plane in the hot area at x/rc = 8 as a function
of the externally imposed J0. The conductive flux decays faster for
the aT model in comparison with aC with increasing J0. Note that
for these two models, the temperature at the reference plane is the
same, but the density is different, as can be seen in Fig. 2. This mono-
tonic decay of the conductive flux with increasing J0 does not occur

FIG. 7. Energy flux across a plane as a function of the applied J0. (a) Conductive
energy flux at x/rc = 8 for the two types of conservative interactions, aC and aT .
(b) Conductive (open symbols) and diffusive (solid symbols) contributions to the
energy flux measured through a plane in the cold area x/rc = 2 (red) and a plane in
the hot area x/rc = 8 (blue). At low temperatures, energy flux is mainly conductive,
while at high temperatures, diffusive flux of energy dominates.
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though, when the reference plane is placed in the cold area at x/rc = 2,
as can be seen by the increase in JC (open red symbols) in Fig. 7(b).
Correspondingly, the diffusive flux JD increases with the injected
heat through the plane at the hot area, while it decreases through the
plane at the cold area. Therefore, local temperature strongly affects
not only the overall heat conductivity as shown in Fig. 4, but also the
ratio between conductive and diffusive fluxes of energy. In Fig. 7(b),
this means that on the hot side, the energy flux is mainly diffusive,
while on the cold side, it is mainly conductive (for not too small
applied heat fluxes).

D. Analytical calculation of energy transfer
In order to provide an analytical expression for the heat-

conduction coefficient κ, we analyze both the conductive and dif-
fusive fluxes of the internal energy to total energy transfer since
kinetic and potential energies have a much smaller contribution (see
Fig. 6). The conductive contribution to the energy transfer between
two particles i and j at opposite sides of the reference plane is given
by Eq. (7). The random part of heat conduction is zero on average,
and the deterministic part can be simplified using the assumption
(Ti + Tj)

2
/(TiTj) ≃ 4 which is reasonable for small temperature

differences. Then, the average heat rate from Eq. (7) between two
particles at the opposite sides of the reference plane becomes

qC,ij =
c2
v

kB
κ0(Tj − Ti)ωH

(rij). (11)

The linear temperature profile can be approximated as Tj − Ti

=
dT
dx

Δx =
dT
dx

rij cos θ, where θ is the angle between rij and the
temperature gradient axis (see Fig. 8). Considering that particle j is
located at a distance h from the plane, the total heat conduction rate
between particle j and its neighbors on the other side of the reference
plane is given by

qC,j(h) = ρ∫
2π

0
dϕ∫

θc

0
dθ∫

rc

h
drijr2

ijg(rij) sin θqC,ij, (12)

FIG. 8. Heat-conduction integration domain (cyan) for particle j and particle i at
opposite sides of the reference plane.

with θc = arccos(h/rc). For a non-ideal fluid, the RDF is g(rij) ≠ 1 and
needs to be pre-computed for the numerical integration of Eq. (12).
Total heat rate by conduction is, then, calculated by integrating
qC ,j(h) over a volume Arc as

qC = ρA∫
rc

0
qC,j(h)dh =

πρ2c2
vκ0

kB
dT
dx

AH(rc), (13)

where A is the area of the reference plane and

H(rc) = ∫
rc

0
dh(1 −

h2

r2
c
)∫

rc

h
drr3g(r)ωH

(r)

= r5
c ∫

1

0
ds(1 − s2

)∫

1

s
dll3g(lrc)ωH

(lrc) ≡ r5
c I1. (14)

The second equality above makes use of the change in variables
s = h/rc and l = r/rc, while the last equality defines a numerical coeffi-
cient I1, which in general depends on g(r) and ωH(r) and, therefore,
on the system parameters. With the employed default parameters in
Sec. II D, I1 = 0.058.

The second contribution to heat transfer by particle diffusion
is calculated by considering particles crossing the reference plane at
x = const. It is equal to qID = NJΔϵ, where NJ is the number of parti-
cles crossing the reference plane from hot to cold per unit time. The
internal energy transferred by each particle crossing from the hot to
the cold side can be calculated as

Δϵ = ϵ̄(x + λ) − ϵ̄(x − λ) ≃ 2λ
∂ϵ̄
∂T

dT
dx
= 2λcv

dT
dx

. (15)

Here, the mean free path λ can be approximated as λ = τcv̄x, where τc
is the collision time and v̄x is the average velocity of particles cross-
ing the plane in one direction. The collision time is related to the
decay of the velocity autocorrelation function, which can be calcu-
lated in simulations by assuming an exponential decay of the velocity
autocorrelation as

⟨vi(t)vi(0)⟩ = e−t/τcv2
i (0). (16)

The values of τc shown in Fig. 9 have been calculated by fitting an
exponential function to direct simulations of the velocity autocorre-
lation using Eq. (16). In order to provide an analytical estimate for τc,
we follow the procedure in Ref. 58, where the friction from dissipa-
tive interactions defines 1/τc and the sum over dissipative forces for
neighboring particles is replaced by an integral. The random force
vanishes on average and the conservative force determines the RDF
such that the expression in Ref. 58 can be generalized to

τ−1
c =

4πγρ
3m ∫

rc

0
drr2g(r)ωD

(r)

=
4πγρr3

c

3m ∫

1

0
dll2g(lrc)ωD

(lrc) ≡
4πγρr3

c

3m
I2. (17)

The last equality defines the numerical coefficient I2, which can be
calculated for the default parameters in Sec. II D to be I2 = 0.131.
Substitution of γ = σ2/(2kBT) (i.e., for Ti ≃ Tj) into Eq. (17) results
in

τc =
3mkBT

2πσ2ρr3
c I2

. (18)
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FIG. 9. Collision time calculated for various values of the average temperature and
density. Symbols correspond to simulation results, and the solid line corresponds
to Eq. (18).

A good agreement between simulated collision times and the
analytical approximation is shown in Fig. 9 for different val-
ues of the average temperature and density values. Note that the
expression in Eq. (17) corresponds to the Vlasov (weak-scattering)
approximation58,77 which might become inaccurate for large fluid
viscosities.

Assuming that the mean free path is small, that the temperature
gradients are not large, and that the velocity distribution function
f (v) can be approximated by the Maxwell–Boltzmann distribution,
we can calculate both NJ and v̄x. The number of particles, NJ , cross-
ing the reference plane from hot to cold per unit time, accounts only
for particles with positive velocities,

NJ = ρA∫
∞

0
f (vx)vxdvx = ρA

√

kBT
2πm

, (19)

and the average velocity of those particles is

v̄x =
∫

∞
0 dvxvxf (vx)

∫

∞
0 dvxf (vx)

=

√

πkBT
2m

. (20)

The results from Eqs. (18)–(20) together yield the diffusive rate of
internal energy,

qID =
3(kBT)2cv
2πσ2r3

c I2
A

dT
dx

. (21)

The total heat rate is then the sum of the contributions from
Eqs. (13) and (21). With Eq. (10), the heat conductivity can then be
approximated as

κ ≃
πρ2c2

vκ0r5
c

kB
I1 +

3(kBT)2cv
2πσ2r3

c I2
. (22)

This analytical expression can be compared with the simulation
results shown in Fig. 4, where a very satisfactory agreement is
obtained without any adjustable parameters. Note that this quan-
tity has been previously calculated with alternative approaches. The

temperature dependence that we obtain in Eq. (22) is similar to that
in Ref. 69, where generalized hydrodynamics with a linearized Boltz-
mann equation was employed. However, the temperature depen-
dence in Eq. (22) is different from that in Ref. 39, where the dissi-
pative contribution was disregarded. The reason for this difference
remains to be clarified.

E. Prandtl and Schmidt numbers
A quantitative comparison of the properties of any simulated

fluid with those of real fluids can be achieved by considering dimen-
sionless numbers, such as the Prandtl number, Pr, or the Schmidt
number, Sc. The Prandtl number is the ratio of momentum and
energy transport defined as

Pr =
μCP

κ
, (23)

where μ and CP are the dynamic viscosity and specific heat capac-
ity at constant pressure, respectively. For the large values of cv in
DPDE, CP ≃ cv. The Schmidt number Sc is the ratio of momentum
and diffusive mass transport defined as

Sc =
μ

mρD
, (24)

where D is the translational diffusion coefficient.
The Prandtl and Schmidt numbers in DPDE are functions of

model parameters and can be set to various values independently.
The transport properties of a DPD fluid have been investigated in
several studies.56,58,78 Expressions for D and μ have been derived
and can be generalized in a similar way as previously shown for the
collision time. This yields

D =
τckBT
m
=

3(kBT)2

2πσ2ρr3
c I2

, (25)

μ =
ρD
2

+
2πγρ2

15 ∫

rc

0
drr4g(r)ωD

(r)

=
ρD
2

+
πσ2ρ2r5

c

15kBT ∫
1

0
dll4g(lrc)ωD

(lrc)

≡
3(kBT)2

4πσ2r3
c I2

+
πσ2ρ2r5

c

15kBT
I3. (26)

Equation (26) defines the numerical coefficient I3, which can be
calculated for the default parameters to be I3 = 0.073, resulting in
Pr = 2.0 and Sc = 3.57. Alternatively, we obtain slightly larger values,
Pr = 2.1 and Sc = 4.1, by keeping all default parameters but consid-
ering the ideal case with g(r) = 1. Furthermore, different expressions
for the weight functions of the conservative, dissipative, and heat
terms will lead to different Pr and Sc values. Liquids have typical Pr
and Sc values within ranges 5–15 and 100–1000, respectively,79 while
for gases, both Pr and Sc are typically close to unity.79,80 Thus, our
default system lies at the boundary between gaseous and fluid behav-
ior. Using the expressions for transport coefficients above, model
parameters (e.g., ρ, rc, σ, cv, κ0) of a DPDE fluid can be selected
such that the Prandtl and Schmidt numbers correspond more accu-
rately to those of any given fluid. For example, an increase in the
fluid density ρ and/or the cutoff radius rc will lead to Prandtl and
Schmidt numbers which are larger than those employed here but at
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the same time will result in an increase in computational cost. Sev-
eral examples of DPDE simulations in Ref. 37 show that Sc > 1000
and Pr > 10 are possible to achieve. We have verified that the ana-
lytical expressions for Sc and Pr still give a good approximation of
these non-dimensional numbers for the examples in Ref. 37, even
though these expressions may become less accurate for large fluid
viscosities.

IV. SUMMARY AND DISCUSSION
In this paper, various aspects related to the performance of the

DPDE method have been systematically investigated. A modification
of the velocity-Verlet integration algorithm by local energy redis-
tribution is suggested. In the LER algorithm, the changes in local
kinetic and potential energies are exactly counterbalanced by the
internal energy every time step at the level of single DPDE parti-
cles. This constitutes a simple implementation that leads to approx-
imate conservation of local energy, while the total energy in a simu-
lated system is conserved up to the order of machine precision. The
model is validated by verifying the equivalence of the two alterna-
tive definitions of the temperature (kinetic and internal), TK = TI ,
and by studying the behavior of particle RDF. Although the meso-
scopic nature of a DPDE solvent requires that cv≫ kB, if simulations
with cv < 50 are to be considered, it is important to note that the
SS-based algorithms have shown to be more stable since negative
energies might appear.41–44 Nevertheless, the main advantage of the
LER integration algorithm over a SS scheme is that it is computation-
ally faster and has an easier implementation on parallel computer
architectures. These results suggest that the LER algorithm proposed
here should be used for studies with cv/kB ≳ 50 and Δt ≲ 0.02τ
(where τ is the unit of time) to guarantee a stable and consistent
simulation.

Compressibility effects are especially relevant in the presence
of a temperature gradient, due to the related differences in the
density distribution, such that we investigate different choices for
the conservative interactions. A DPDE fluid with temperature-
dependent conservative interactions shows a compressibility lower
than a DPDE fluid with an ideal-gas equation of state but clearly
larger than a DPDE fluid with constant conservative interactions.
Nevertheless, the heat-conduction coefficients are similar for both
temperature-dependent and constant conservative interactions.

The interparticle heat-conduction term qHC employed here was
originally postulated to be proportional to the particles’ inverse-
temperature difference, as specified in Eq. (7). Although widely used,
this formulation agrees with the Fourier law (and, therefore, with
irreversible thermodynamics) only in the limit of small temperature
variations. Therefore, an alternative form for the heat-conduction
flux, qHCij = κ̃ijωH

(rij)(Tj−Ti)+α̃ijζij[ωH
(rij)/Δt]

1/2 with α̃2
ij = κ̃ijTiTj

and κ̃ij = cv κ̃0, has also been proposed.39,40,81,82 This expression
agrees with the Fourier law and satisfies an H-theorem and a related
fluctuation-dissipation theorem up to the order of O(kB/cv) (see
the Appendix of Ref. 81). To fulfill the fluctuation-dissipation the-
orem exactly, a more sophisticated integration algorithm,40 which
takes possible spurious drifts into account, might be required. Nev-
ertheless, simulations with the qHC formulation above (not shown
here) for cv/kB = 200 using the LER algorithm have displayed no
significant differences in comparison with those with the qHC term
from Eq. (7), suggesting that the errors are likely small for a large cv.

The correspondence between the two models of qHC was achieved
through matching of κ̃0 = κ0cv/kB, which is a plausible
assumption when local temperature differences are not too large
(i.e., Ti ≈ Tj).

The thermal conductivity of the DPDE models is measured
in simulations by fitting the Fourier law to an induced tempera-
ture gradient. Thermal conductivity describes the system in a very
robust manner, showing minor changes for a wide range of tem-
perature gradients. Energy in a DPDE fluid is transferred by the
diffusive motion of DPDE particles and by heat conduction due to
the internal particle temperature, which depends on local average
temperature. The inter-particle conductivity is directly controlled by
κ0, while the diffusive transport depends on the particle friction (or
equivalently σ2) such that depending on local conditions, conduc-
tive or diffusive transport of heat may dominate. Good agreement
between the analytical expression and simulation measurements of
the thermal conductivity is obtained for a large range of parameters.
We have also presented analytical approaches to obtain the most
important transport coefficients and, therefore, the two most rele-
vant non-dimensional fluid numbers: the Prandtl (Pr) and Schmidt
(Sc) numbers. These expressions allow the selection of simulation
parameters such that the corresponding Pr and Sc of a DPDE fluid
approximate well those of liquids. In conclusion, our results provide
a detailed guidance on how to properly employ the DPDE method
in simulations of various mesoscopic systems with temperature
inhomogeneities.
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APPENDIX: INTEGRATION ALGORITHM WITH LOCAL
ENERGY REDISTRIBUTION (LER)

For integration of Eq. (1), the velocity-Verlet algorithm83 is
adapted. In the first integration step, both particle velocities and
internal energies are advanced half time step, while particle positions
are integrated full time step as follows:

vi(t +
Δt
2
) = vi(t) +

Fi(t)
mi

Δt
2

, (A1)

ϵi(t +
Δt
2
) = ϵi(t) + qi(t)

Δt
2
− [Ki(t +

Δt
2
) − Ki(t)], (A2)

ri(t + Δt) = ri(t) + vi(t +
Δt
2
)Δt. (A3)

Note that the term [⋯] reflects a change in the particle’s kinetic
energy Ki(t) =

mi

2
v2
i (t), which is counterbalanced by a portion

of internal energy in order to enforce total energy conservation
locally. Before the second integration step, particle forces Fi(t +
Δt), potential energies Pi(t + Δt), and energy rates qi(t + Δt) are
computed based on ri(t + Δt) and vi(t + Δt/2). In the second step,
particle velocities and internal energies are integrated half time
step as
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vi(t + Δt) = vi(t +
Δt
2
) +

Fi(t + Δt)
mi

Δt
2

, (A4)

ϵi(t + Δt) = ϵi(t +
Δt
2
) + qi(t + Δt)

Δt
2

−[Ki(t + Δt) − Ki(t +
Δt
2
)]

− [Pi(t + Δt) − Pi(t)]. (A5)

Here, changes in both kinetic and potential energies are offset
against the internal energy to satisfy total energy conservation.
Potential energy corresponds to the conservative interaction as

FCij = −∇⃗Pij such that Pi = ∑j
aijrc

2
(1 −

rij
rc
)

2
.

It is important to note that particle quantities such as
δPi = Pi(t + Δt) − Pi(t) and δK i = K i(t + Δt) − K i(t) can only
be computed with an accuracy of O(Δt), implying that the local
energy is only approximately conserved. Thus, the LER algorithm
redistributes the numerically lost or gained energy to exactly restore
the energy balance. This energy redistribution is legitimate since it
intrinsically follows the original idea of the DPDE method, where
the internal energy variable was introduced in order to absorb the
imbalance of mechanical energy.33,34
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