000874322 001__ 874322
000874322 005__ 20210130004643.0
000874322 0247_ $$2Handle$$a2128/24454
000874322 037__ $$aFZJ-2020-01370
000874322 041__ $$aEnglish
000874322 1001_ $$0P:(DE-HGF)0$$aCuteri, Francesca$$b0
000874322 1112_ $$aNIC Symposium 2020$$cJülich$$d2020-02-27 - 2020-02-28$$wGermany
000874322 245__ $$aCut-Off Effects on the QCD Thermal Transition as a Function of Quark Masses and Chemical Potential
000874322 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000874322 29510 $$aNIC Symposium 2020
000874322 300__ $$a33 - 42
000874322 3367_ $$2ORCID$$aCONFERENCE_PAPER
000874322 3367_ $$033$$2EndNote$$aConference Paper
000874322 3367_ $$2BibTeX$$aINPROCEEDINGS
000874322 3367_ $$2DRIVER$$aconferenceObject
000874322 3367_ $$2DataCite$$aOutput Types/Conference Paper
000874322 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1583388123_29620
000874322 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000874322 4900_ $$aPublication Series of the John von Neumann Institute for Computing (NIC) NIC Series$$v50
000874322 520__ $$aWe report on the status of a long term project to determine the nature of the thermal transition in QCD (the fundamental theory of strongly interacting matter composed of quarks and gluons) as a function of the number of quark flavours, their masses, imaginary chemical potential for baryon number and the lattice spacing. Our knowledge on the order of the thermal QCD transition depending on these parameters is summarised in what is known as Columbia plot. Besides showing the structure of the theory, it is important to constrain the QCD phase diagram realised by nature, which cannot be simulated directly due to a severe sign problem at real baryon chemical potentials. Having determined the qualitative structure of the Colombia plot in earlier studies, current efforts focus on reducing the lattice spacing and understanding discretisation effects, which need to be removed to arrive at continuum results.
000874322 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000874322 7001_ $$0P:(DE-HGF)0$$aPhilipsen, Owe$$b1
000874322 7001_ $$0P:(DE-HGF)0$$aSchön, Alena$$b2
000874322 7001_ $$0P:(DE-HGF)0$$aSciarra, Alessandro$$b3
000874322 7870_ $$0FZJ-2020-01353$$iIsPartOf
000874322 8564_ $$uhttps://juser.fz-juelich.de/record/874322/files/NIC_2020_Sciarra.pdf$$yOpenAccess
000874322 8564_ $$uhttps://juser.fz-juelich.de/record/874322/files/NIC_2020_Sciarra.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874322 909CO $$ooai:juser.fz-juelich.de:874322$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874322 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874322 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874322 9141_ $$y2020
000874322 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aGoethe Universität Frankfurt$$b0
000874322 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aGSI$$b1
000874322 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aGoethe Universität Frankfurt$$b1
000874322 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aGoethe Universität Frankfurt$$b2
000874322 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aGoethe Universität Frankfurt$$b3
000874322 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000874322 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x0
000874322 980__ $$acontrib
000874322 980__ $$aVDB
000874322 980__ $$aUNRESTRICTED
000874322 980__ $$acontb
000874322 980__ $$aI:(DE-Juel1)NIC-20090406
000874322 9801_ $$aFullTexts