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We report on the status of a long term project to determine the nature of the thermal transi-

tion in QCD (the fundamental theory of strongly interacting matter composed of quarks and

gluons) as a function of the number of quark flavours, their masses, imaginary chemical po-

tential for baryon number and the lattice spacing. Our knowledge on the order of the thermal

QCD transition depending on these parameters is summarised in what is known as Columbia

plot. Besides showing the structure of the theory, it is important to constrain the QCD phase

diagram realised by nature, which cannot be simulated directly due to a severe sign problem at

real baryon chemical potentials. Having determined the qualitative structure of the Colombia

plot in earlier studies, current efforts focus on reducing the lattice spacing and understanding

discretisation effects, which need to be removed to arrive at continuum results.

1 Introduction

Quantum Chromodynamics is the fundamental theory of the strong interactions governing

the forces between nuclear and subnuclear particles. Its fundamental degrees of freedom

are light u- and d-quarks, a heavier s-quark and gluons, which are the force carriers in

this quantum field theory. The coupling strength of the interactions depends on the energy

scale of a scattering process. For energies below a few GeV, the coupling is large and

quarks and gluons combine into numerous tightly bound states, the hadrons, among them

the familiar proton and neutron. On the other hand, at large temperatures or densities, the

average energy per particle is higher and the theory enters a weak coupling regime, where

the constituents form a so-called quark gluon plasma. The QCD phase diagram determines

the form of matter under different conditions as a function of temperature, T , and matter

density parametrised by a chemical potential µ for quark number, which is one third that

of the conserved baryon number. Whether and where the hadronic phase and the quark

gluon plasma are separated by true phase transitions has to be determined by first principle

calculations and experiments. Since QCD is strongly coupled on scales of hadronic matter,

a non-perturbative treatment is necessary. The most reliable approach is by Monte Carlo

simulation of a reformulation of the theory on a space-time grid, lattice QCD.

Unfortunately, the so-called sign problem prohibits straightforward simulations at fi-

nite baryon density. For this reason, knowledge of the thermal phase transition at zero

density as a function of the theory’s parameters, also for unphysical values, is of great im-

portance to constrain and anchor research in the finite density direction. It is well-known

that the physical point of QCD (with quark mass values realised in nature) displays only an

analytic, smooth crossover between the hadronic and the plasma regions, without a non-

analytic phase transition.1 However, the order of the finite temperature phase transition at
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Crossover 1st triple Tricritical 3D Ising

B4 3 1.5 2 1.604
ν − 1/3 1/2 0.6301(4)

Table 1. Critical values of ν and B4 ≡ B4(βc, Xc,∞) for some universality classes.11

among other features, an implementation of the (R)HMC algorithm for unimproved (rooted

staggered) Wilson fermions.

In our studies, the chemical potential has been kept fixed at either µ = 0 or at the

purely imaginary value µ = iµRW
i , µRW

i = π/3. The latter choice is motivated by the fact

that there is no sign problem at imaginary chemical potential, and that µRW
i constitutes

a Roberge-Weiss phase boundary between different centre-sectors of the QCD symmetry

group, which are periodically repeated as imaginary chemical potential is increased.10

Temperature T is related to the lattice gauge coupling β and the temporal lattice extent

according to

T = 1/(a(β)Nτ ) (1)

Approaching the continuum limit at fixed temperature is realised by taking β → ∞,

a(β) → 0, Nτ → ∞. Our studies in Sec. 5 and in Sec. 4 are conducted at a fixed tempo-

ral extent Nτ of the lattices (no continuum limit is attempted in these cases), while for the

study described in Sec. 3 three different values of Nτ are considered. The ranges in mass m
or hopping parameter κ (parametrising mass in the Wilson discretisation) and gauge cou-

pling constant β are always dictated by our purpose of locating the chiral/deconfinement

phase transition.

In order to locate the chiral/deconfinement phase transition and to identify its order, a

common strategy is adopted, which consists of a finite size scaling analysis (FSS) of the

third and/or fourth standardised moments of the distribution of an order parameter for the

transition. The nth standardised moment, given the distribution of a generic observable O,

is expressed as

Bn(O) =
〈(O − 〈O〉)

n
〉

〈

(O − 〈O〉)
2
〉n/2

(2)

and we analyse its dependence on some parameter X ∈ {m,κ, β} and on the volume.

We will introduce an exact or approximate order parameter O for each investigation in the

corresponding sections. However, in all cases, in order to extract the order of the transition

as a function of the bare quark mass and/or number of flavours, we considered the kurtosis

B4(O) of the sampled distribution of O.

In the thermodynamic limit Nσ → ∞, the universal values taken by the kurtosis B4

and by the critical exponent ν for our cases of interest are well known results listed in

Tab. 1. However, the discontinuous step function characterising the thermodynamic limit

is smeared out to a smooth function as soon as a finite volume is considered and a FSS

is needed. In all cases we varied the spatial extent of the lattice Nσ such that the aspect

ratios, governing the size of the box in physical units at finite temperature, was in the range
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was investigated with the aim to monitor and possibly model cut-off effects. A previous

report on this project is to be found in Ref. 15, while here we focus on the impact of finite

size effects in this investigation. It is an additional difficulty of the heavy mass region that

pions cannot be resolved on our lattices up to Nτ ≈ 10. And, while a → 0 with growing

Nτ , the necessity of keeping the relation 1 ≪ Nτ ≪ Nσ satisfied forces us to use larger

Nσ values to keep the size of the box fixed in physical units. This has to be satisfied already

for the smallest of the volumes in our FSS analysis.

In view of the increasing cost of simulations, some work was invested in devising an

alternative and possibly cheaper strategy to locate κZ2

heavy. One could, indeed, first identify

at any fixed value of the bare mass some minimal physical volume Vmin, characterised by

that it allows a reliable extraction of κZ2

heavy from a linear fit of the kurtosis. At a different κ
or Nτ , it should then be enough to e. g. reweight the effective potential Veff at just one fixed

V & Vmin as in Ref. 13 to locate the phase transition and understand its nature. In practice

we start by using a modified fit ansatz for the kurtosis in the vicinity of the critical point16

B4(κ,Nσ) =
[

B4(κ
Z2

heavy,∞) + c (κ− κZ2

heavy)N
(1/ν)
σ

]

(1 +BNyt−yh

σ )

which incorporates the finite volume effect for generic observables which are a mixture of

energy-like and magnetisation-like operator and where the value of the exponent yt−yh is

fixed by universality. Then we estimate Vmin by excluding one-by-one the smallest physical

volumes in the fit, until the value of the coefficient of the correction term is compatible with

zero. Preliminary results are collected in Tab. 2 and one example of the performed fits is

provided in Fig. 2(b).

4 Updates on an Alternative mu,d–Nf Columbia Plot: Z2 Boundary

in the Chiral Limit

In this study we treat Nf as a continuous real parameter of some statistical system behaving,

at any integer Nf value, as QCD at zero density, with Nf mass-degenerate fermion species17

ZNf
(m) =

∫

DU [detM(U,m)]
Nf e−SG (4)

Within this framework, the two considered scenarios for the Columbia plot can be put

in one-to-one correspondence with the two sketches for the order of the thermal phase

transition in the (m,Nf)-plane displayed in Fig. 3.

We employ unimproved staggered fermions and use the RHMC algorithm18 to simulate

any number Nf of degenerate flavours. Our original strategy was to find out for which tri-

critical value N tric
f the phase transition displayed by this system changes from first-order to

second-order, by mapping out the Z2 phase boundary. The extrapolation to the chiral limit

with known tricritical exponents can then decide between the two scenarios, depending on

whether N tric
f is larger or smaller than 2.

While the tricritical scaling region was found to be very narrow already on coarse

Nτ = 4 lattices, results at larger m and Nf were found to feature, over a much wider

region, a remarkable linear behaviour, which was not expected on universality grounds,

see Fig. 4 .

What our findings suggest is that, if it is reasonable to expect both linearity within some

range in Nf and tricritical scaling more in the chiral limit, then one would be able to make
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infer that the transition in the Nf = 2 chiral limit is of first order. However, should our

linear extrapolation give N lin
f & 2, then knowledge of the size of the scaling region is

necessary to draw conclusions.

Our results are reported in Fig. 4. The first important thing to observe is that, while

tricritical extrapolation for Nτ = 4 resulted in N tric
f < 2, providing an independent confir-

mation for the first order scenario being realised on coarse lattices, a linear extrapolation to

the chiral limit using Nf ∈ [2.4, 5.0], results in N lin
f = 2 within errors. Strictly speaking,

by just considering Nτ = 4 results, one would conclude that the linear extrapolation alone

cannot give conclusive answers on the order of the Nf = 2 transition in the chiral limit.

However, results on finer lattices were produced as well. On Nτ = 6, what we observe is

that data within the range Nf ∈ [3.6, 4.4] certainly do not fall in the tricritical scaling re-

gion, but they do exhibit linear scaling. Moreover, if we consider the result for Nf = 3 for

the same discretisation from the literature,6 we can see it is fully consistent with our linear

extrapolation. Finally, the most important aspect of this result is that, linearly extrapolating

at Nτ = 6, we get N lin
f . 3, namely quite far to the right of Nf = 2.

5 Updates on the Extended Columbia Plot: Roberge-Weiss Endpoint

The Columbia plot at µi = µRW
i displayed in Fig. 5(a) looks similar to the one in Fig. 1(a),

but with the Z2 lines replaced by tricritical lines, first order triple regions that are wider than

at µ = 0 and a second order Z2 region at intermediate values for the quark masses. In this

case the imaginary part of the Polyakov loop LIm was measured as order parameter for the

Roberge-Weiss phase transition. Once again, we focused on the case of Nf = 2 degenerate

unimproved staggered quarks, and tried to locate, with a scan in mass, the tricritical points

mtricr.
heavy and mtricr.

light on Nτ = 6 lattices as already done for other discretisations and Nτ

values.19–21 A previous report on this project is to be found in Ref. 23.

For each value of mu,d, simulations were performed at a fixed temporal lattice extent

Nτ = 6 and at a fixed value of the chemical potential aµRW
i = π/6. The extraction of

the critical exponent ν was accomplished both with the kurtosis fit procedure and with

a quantitative data collapse described in Ref. 24. Results for the critical exponent ν are

reported in Fig. 5(b). Since results from either kind of analysis happen to agree within

a 1σ discrepancy in all (but one) case, they are combined to obtain the final answer on

ν. To comment more on our results, it is important to stress that for the FSS at least

three volumes are necessary for safe conclusions and we used Nmin
σ = 12, 18, 24 and

Nmax
σ = 30, 36, 42, depending on the mass. For each lattice size, 3 to 8 values of β around

the critical temperature were simulated, each with 4 Markov chains.

In order to decide when to stop accumulating statistics, for large (small) masses the

kurtosis of the imaginary part of Polyakov loop was required to be compatible on all the

chains within 2 (3) standard deviations. Since this condition can be fulfilled also at a very

poor statistics, due to large errors, a further empirical requirement is that values of the

kurtosis from different chains must span, errors included, an interval not wider than 0.5.

As indicated in Fig. 5(b) it is still not possible to give the two tricritical masses with

their statistical error, because in the light mass range no simulation point falls on the first

order triple line. This is because larger and larger volumes are needed in ranges where

the transition goes from tricritical to weakly first-order. We can however quote a result

with asymmetric errors to reflect this uncertainty, mtricr.
πlight = 328+44

−88 MeV.24 One can now
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6 Conclusions

Our systematic study of the order of the QCD thermal transition and its dependence on

the parameters of the theory as well as on the simulation volume and lattice spacing has

revealed two main insights: the first of these is rather unfortunate technically, as it indicates

very strong cut-off effects on the second-order boundary lines in the Columbia plot, both at

zero and non-zero baryon density. Combined with the large volumes required to decide on

the order of the transition, this renders future investigations extremely compute-expensive,

and thus slow, before one can extrapolate to the desired continuum results. On the positive

side, we have at least arrived at a full understanding of the qualitative features of cut-off

effects on the Columbia plot. In particular, the chiral first-order region shrinks strongly

with decreasing lattice spacing, for all Nf and at zero as well as non-zero baryon density.

This is valuable input also to constrain the physical QCD phase diagram. Finally, at least

in the heavy mass region one might hope to find a continuum limit for the second-order

boundary within the next couple of years, which would serve as valuable benchmark for,

e. g. functional renormalisation group methods in the continuum.
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