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The particle physics group at the John von Neumann Institute for Computing (NIC) is concerned

with quantum field theories, in particular with their non-perturbative aspects. Here we describe

recent efforts of the group to develop and consolidate methods and concepts to reach the goal to

understand non-perturbative phenomena in quantum field theories and to calculate observables

with a high precision.

1 Introduction

The group covers a large range of topics, from the exploration of new strategies to treat

quantum field theories non-perturbatively (Tensor networks, quantum computations) to

the development of ever more efficient algorithms for Markov chain Monte Carlo to high

precision applications concerning the determination of fundamental parameters of QCD,

the muon anomalous magnetic moment, or weak decays of hadrons. In this contribution we

give a short summary of recent work on three subjects: Tensor network methods, multilevel

Monte Carlo and heavy sea quarks (quantum effects of heavy quarks).

2 Tensor Network Methods

Nowadays, the path integral is clearly the method of choice to evaluate lattice quantum

field theories (LQFT). Still, in the beginning of LQFT it has been the Hamiltonian for-

malism which was used frequently. In practice, this approach was abandoned, due to the

untractably large size of the Hilbert space. However, it has been realised in the last years

that it is only a small set of all possible states which is relevant to obtain ground state prop-

erties. This small corner of the Hilbert space is build by states which obey the so called

area law. These states can, in general, be constructed through tensor network states which

become matrix product states (MPS) in one dimension. In this approach, the very high

dimensional coefficient tensor needed in the Hamilton formalism is replaced by a product

of complex matrices. By systematically increasing the size of these matrices and comput-

ing their entries through a variational method, minimising the energy as a cost function,

ground state properties can be computed very precisely. In fact, mathematical theorems

state that this procedure converges exponentially fast to the ground state of the consid-

ered Hamiltonian. In practice, the size of the used matrices are of order 100 which make

such computations completely feasible and tensor networks have been used for condensed

matter systems very successfully, see e. g. Ref. 1 for an introduction into tensor network

techniques.
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Figure 1. Phase diagram in the m/g - µI/2π plane with m denoting the fermion mass, g the coupling and µI

the chemical potential. The black X’s mark the computed data points, the different colours indicate the different

phases.

As one of the first, the NIC group has adapted this approach of the Hamilton formalism

using MPS for models in high energy physics, see Ref. 2 for a recent review. Since the

Hamilton formalism is free of the sign problem, it offers the exciting possibility to study, in

principle, questions where conventional Monte Carlo (MC) methods fail and which include

non-zero baryon density as relevant for understanding the early universe; topological terms

for the matter anti-matter asymmetry and real time evolutions of physical systems.

By computing the low-lying particle spectrum of the Schwinger model,3 which has

one space dimension, as a benchmark, a proof of principle could be provided that MPS

can be used also for gauge theories. Followed by a calculation in this model at non-zero

temperature,4 the Schwinger model for two flavours of fermions was studied with a non-

zero (isospin) chemical potential.5 Addressing this question by conventional Monte Carlo

methods is impossible due to a severe sign problem. It has therefore been very important to

test, whether MPS can overcome this difficulty, or, whether the sign problem re-appears in

a different way. Indeed, it was shown that the technique of MPS performs very well also in

the situation with a non-zero chemical potential. Working first with a zero fermion mass,

MPS results could be confronted with an analytically known expression and a complete

agreement was found, demonstrating that MPS solves the problem of a non-zero chemi-

cal potential. Switching on a fermion mass, the phase diagram in the plane of chemical

potential and fermion mass could be established,5 see Fig. 1. Here no analytical result

is available and only the usage of MPS made it possible to obtain this phase diagram

making MPS or tensor networks the most promising tool to address important and so far

intractable problems in high energy physics. Tensor network techniques were also used for

non-abelian theories6 and for studying the Schwinger model in presence of a topological

term.7 Still, a warning is in order since the computational cost of calculations for higher

than one (space) dimension is presently too large to study systems of realistic size. How-

ever, there is a substantial amount of research ongoing to find better techniques for high

dimensions as discussed in a recent workshopa co-organised by the NIC group. There, sev-

ahttps://indico.desy.de/indico/event/21941/overview
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region, together with the neighbouring black ones. Since longer paths typically contribute

less than shorter ones, good approximations can be found which fulfil this property.

It becomes more difficult once we have to consider quark loops, as is necessary for

the determinant. Here we managed to rewrite the corresponding terms using integrals over

scalar fields, an idea which has already been used in the multiboson algorithm12 and could

demonstrate that the idea works in dynamical simulations.

Ordinary Monte Carlo simulations lead to uncertainties which are reduced with the

inverse square root of the number of measurements 1/
√
N . In the ideal case, for updates

in n independent regions, such a method leads to a scaling with 1/Nn/2. However, as we

have seen, for fermions such regions will have to be sufficiently thick in order to profit

from this technique. It needs to be seen if for a given observable a decomposition into

sufficiently many regions can be found to profit from this algorithm.

4 Effects of Heavy Fermions on Low-Energy Physics and

High-Energy Strong Coupling

The discretisation of space-time on a regular lattice leads to a Brilloin zone just like in

crystals. Thus the high momentum, high energy behaviour is distorted. Also particles with

large masses can’t be simulated properly. For this reason lattice simulations include up,

down and strange quarks, while the bottom and top quarks with masses above 4 GeV are

excluded since they would contribute more distortion effects than physical effects. The

charm quark with a mass of around our Mcharm=1.6 GeV is in between the typical scale

of hadronic physics Ehad ≈ 0.5 GeV and the achievable cutoffs (the edge of the Brilloin

zone) of Ecut ≈ 4 GeV. It is thus a good question whether it is better to include the charm

quark (often called 2+1+1 simulations) or not (2+1) and what are the uncertainties

introduced by leaving it out.

In general, the answer to this question will depend on many details, from how one

discretised QCD to which process one wants to predict from the simulations. Fortunately,

there are also some rather universal statements which can be made. These have been the

subject of our recent investigations and we give a brief account of them here.

4.1 The Effective Theory: decQCD

At low energies and momenta, say at Ehad and below, there is a systematic expansion in

terms of y = E/Mcharm, given in terms of an effective field theory, which excludes the

charm quark, but has a few additional terms in its Lagrangian with coefficients proportional

to 1/M2
charm.

The leading order low energy effective theory is QCDnℓ
, where nℓ is the number of

quarks in the Lagrangian. So far we had talked about nℓ = 3. Next-to-leading order terms

in the local effective Lagrangian are gauge-, Euclidean- and chiral-invariant local fields.

These invariances allow only for fields, Φi(x), of at least dimension six. The Lagrangian

may then be written as

Ldec = LQCDnℓ
+

1

M2

∑

i

ωiΦi +O(M−4) (1)

with dimensionless couplings ωi which depend logarithmically on the mass M .

46



At the lowest order in 1/M , a single couplingb, gdec, is adjusted such that the low

energy physics of QCDnℓ
and QCDnf

match for energies E ≪ M . It then suffices to

require one physical low-energy observable to match, e. g. a physical coupling. Discussing

the issue in perturbation theory,13 Bernreuther and Wetzel chose the MOM-coupling as a

physical coupling and worked out the matching of the MS coupling. Meanwhile, the latter

is known to high perturbative order,14–20 which we use.

4.2 Non-Perturbative Investigation for nf = 2 → nℓ = 0

The main question is now, whether the effective theory is accurate at values of the quark

mass around the charm mass, i. e. around 1.6 GeV. A direct test would require to simulate

the 2+1+1 theory which would be very expensive because of the light quarks.

We therefore investigated a very closely related model, namely QCD with nf = 2
heavy, mass-degenerate quarks.21, 22 The decoupling is then 2 → 0 and the Lagrangian of

the effective theory, Ldec, is the Yang-Mills one up to 1/M2 corrections. in nf = 2 we use

quark mass values up to 1.8 GeV, slightly above the charm.

In principle any low-energy hadronic scale S(M) can be used to test decoupling, but in

practice some choices are far superior to others. We want them to have good precision in

the MC and have controllable lattice artifacts. In our purely gluonic effective theory, very

good scales are defined in terms of the gradient flow.23, 24 Here we report on two scales

explicitly, which probe the theory in the low energy region at E ≈ 1/
√
8t0 ≈ 0.5 GeV and

E ≈ 1/
√
8tc ≈ 0.7 GeV.

4.2.1 Simulations

In order to avoid the freezing of the topological charge for simulations with lattice spacings

below a = 0.05 fm,25 we adopt open boundary conditions in time and use the openQCDc

package.26

Even after solving the topological charge problem, simulations remain difficult. An

impression is given in Fig. 3. It shows the integrated autocorrelation times τOint of two

observables, O. Their meaning is that (on average) after 2τOint MC iterations a statistically

independent value of the particular observable is obtained. τint itself is difficult to obtain,

but the trend in the figure is clear and confirms theoretical expectations, τint ∼ a−2. We

then need many thousand MC iterations for reliable and precise results at the smallest a.

Our error analysis adds a tail to the autocorrelation function as an estimate of the slow

mode d contribution.25 It is thus robust with respect to long autocorrelations.

Note also that due to the expensive nature of the simulations it is very important that

projects with different physics goals coordinate and share resources, namely gauge con-

figurations. In our case the group of F. Knechtli extended the simulations to larger quark

masses in a separate NIC project whose gauge fields we were able to use.

bAgain we refer to the theoretical situation where the first nℓ flavours are mass-less. In general, also the light

quark masses have to be matched.
chttp://luscher.web.cern.ch/luscher/openQCD/
dhttp://www-zeuthen.desy.de/alpha/public software/UWerrTexp.html
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Figure 3. Autocorrelation times derived from observables which are expected to have large overlap with the

slowest modes in the simulation are plotted as a function of t0(M)/a2.

4.3 Results

We turn to the results. The left part of Fig. 4 shows the ratio of two low energy scales in

the nf = 2 theory as a function of the squared lattice spacing and for four different quark

masses. The continuum extrapolated values are indicated at a = 0. In dimensionless ratios,

such as the one shown, the value of the gauge coupling in the effective theory is irrelevant

and as M → ∞ they approach the nℓ = 0 value. The corresponding behaviour is shown in

the right part. Where the data are, a linear behaviour in 1/M looks more plausible than the

prediction of the EFT, which is ∼ 1/M2 for large M . After our pioneering work, Knechtli
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Figure 4. Left: The continuum extrapolation of the ratio
√

tc/t0 (c = 0.2) at mass values (from top to bottom)

Λ/M = 0, 0.4, 0.78, 1.59, ∞. Right: Its mass-dependence including a linear and quadratic fit in Λ/M between

the largest mass and Nf = 0 (Λ/M = 0).
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Figure 5. The mass-dependence of the ratio
√

t0(M)/t0(0) in the theory with two mass-degenerate quarks.

Monte Carlo data after continuum extrapolation are compared with the perturbative predictions for 1/(QP ) at

large M . The dashed line is the 4-loop curve adjusting the value of Q to go through the point at M/Λ = 5.7781.

The vertical dotted lines mark the values of the quark mass Mc, Mc/2 and Mc/4.

et al.27 extended the computation to larger mass and found agreement with 1/M2. But the

most relevant result is that the corrections due to finite mass are very small, few per-mille

level, when one rescales to the decoupling of a single quark. This holds for the scale ratios

which were investigated, which are a few.21, 27 It is justified to conclude that for low energy

physics, also in QCD as realised in nature, one may safely leave out the charm quark and

work with the 2+1 theory.

Also the M -dependence of dimensionfull scales themselves are predictable by the ef-

fective theory. Now the matching of the coupling of the fundamental, nf , theory and the nℓ

theory is relevant. It turns out that for large M , the mass scaling function ηM = d log(S)
d log(M)

is computable in perturbation theory and the perturbative series looks very well behaved.

A comparison of the shape obtained in the fundamental theory to the one predicted by per-

turbative matching is given by the comparison of squares and dashed line in Fig. 5. The

shape is very well reproduced by PT.

From this non-perturbative test of the quality of perturbative decoupling at the charm

quark, we can deduce22 two important things:

1. The effects of charm, bottom and top-quarks in the running coupling can indeed be

added perturbatively as it has been done in Ref. 28 and a number of other works.
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2. The heavy quark contribution to the coupling of “scalar dark matter” to hadrons is

accurately given by perturbation theory and therefore known more accurately than

previously thought.
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11. M. Cè, L. Giusti, and S. Schaefer, Domain decomposition, multi-level integration and

exponential noise reduction in lattice QCD, Phys. Rev. D 93, 094507, 2016.
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