000874344 001__ 874344
000874344 005__ 20240711092307.0
000874344 0247_ $$2doi$$a10.1002/adem.201901558
000874344 0247_ $$2ISSN$$a1438-1656
000874344 0247_ $$2ISSN$$a1527-2648
000874344 0247_ $$2Handle$$a2128/25160
000874344 0247_ $$2WOS$$aWOS:000517647600001
000874344 037__ $$aFZJ-2020-01377
000874344 082__ $$a660
000874344 1001_ $$0P:(DE-Juel1)173865$$aZeng, Fanlin$$b0$$eCorresponding author
000874344 245__ $$aMicromechanical Characterization of Ce$_{0.8}$ Gd$_{0.2}$ O$_{2‐ δ–}$ FeCo$_{2}$ O$_{4}$ Dual Phase Oxygen Transport Membranes
000874344 260__ $$aFrankfurt, M.$$bDeutsche Gesellschaft für Materialkunde$$c2020
000874344 3367_ $$2DRIVER$$aarticle
000874344 3367_ $$2DataCite$$aOutput Types/Journal article
000874344 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593421520_17293
000874344 3367_ $$2BibTeX$$aARTICLE
000874344 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874344 3367_ $$00$$2EndNote$$aJournal Article
000874344 520__ $$aAiming toward an optimization of dual phase oxygen transport membrane materials for oxygen separation applications, ceramic composites consisting of a Ce1−xGdxO2−δ (0 < x < 0.2) fluorite phase, Gd0.9Ce0.1Fe0.8Co0.2O3 perovskite phase, FexCo3−xO4 (0 < x < 1) spinel phase, and CoO rock salt phase are developed and micromechanical properties (elastic modulus and hardness) of xCe0.8Gd0.2O2−δ: (1−x)FeCo2O4 (50 wt% ≤ x ≤ 90 wt%) composites are characterized via indentation testing at room temperature. The results obtained at low indentation loads indicate that the magnitude of the elastic moduli of the different phases is in the order Gd0.9Ce0.1Fe0.8Co0.2O3 > Ce1−xGdxO2−δ ≈ FexCo3−xO4 > CoO, and furthermore, hardness values are also in the same order. The hardness values of the obtained composites at higher impression loads reveal a stronger dependency on porosity than on composition due to similar hardness values of the main phases. Any compositional effect appears to diminish above a porosity of ≈1%.
000874344 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000874344 588__ $$aDataset connected to CrossRef
000874344 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b1$$ufzj
000874344 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b2$$ufzj
000874344 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b3$$ufzj
000874344 7001_ $$0P:(DE-Juel1)172056$$aKrüger, Manja$$b4$$ufzj
000874344 7001_ $$0P:(DE-HGF)0$$aNijmeijer, Arian$$b5
000874344 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6$$ufzj
000874344 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b7$$ufzj
000874344 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.201901558$$gp. 1901558 -$$n6$$p1901558 -$$tAdvanced engineering materials$$v22$$x1527-2648$$y2020
000874344 8564_ $$uhttps://juser.fz-juelich.de/record/874344/files/adem.201901558.pdf$$yOpenAccess
000874344 8564_ $$uhttps://juser.fz-juelich.de/record/874344/files/adem.201901558.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874344 8767_ $$92020-02-27$$d2020-06-22$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000874344 909CO $$ooai:juser.fz-juelich.de:874344$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000874344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173865$$aForschungszentrum Jülich$$b0$$kFZJ
000874344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b1$$kFZJ
000874344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b2$$kFZJ
000874344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b3$$kFZJ
000874344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172056$$aForschungszentrum Jülich$$b4$$kFZJ
000874344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
000874344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b7$$kFZJ
000874344 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000874344 9141_ $$y2020
000874344 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874344 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000874344 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874344 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENG MATER : 2017
000874344 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874344 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874344 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874344 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874344 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874344 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874344 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000874344 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000874344 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2
000874344 9801_ $$aAPC
000874344 9801_ $$aFullTexts
000874344 980__ $$ajournal
000874344 980__ $$aVDB
000874344 980__ $$aUNRESTRICTED
000874344 980__ $$aI:(DE-Juel1)IEK-2-20101013
000874344 980__ $$aI:(DE-Juel1)IEK-1-20101013
000874344 980__ $$aI:(DE-82)080011_20140620
000874344 980__ $$aAPC
000874344 981__ $$aI:(DE-Juel1)IMD-1-20101013
000874344 981__ $$aI:(DE-Juel1)IMD-2-20101013