Massively Parallel Large-Scale Multi-Model
Simulation of Tumour Development Including
Treatments

M. Berghoff, J. Rosenbauer, A. Schug

published in

NIC Symposium 2020
M. Mdller, K. Binder, A. Trautmann (Editors)

Forschungszentrum Jalich GmbH,

John von Neumann Institute for Computing (NIC),

Schriften des Forschungszentrums Julich, NIC Series, Vol. 50,
ISBN 978-3-95806-443-0, pp. 63.
http://hdl.handle.net/2128/24435

© 2020 by Forschungszentrum Jilich

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.



Massively Parallel Large-Scale Multi-Model Simulation of
Tumour Development Including Treatments

Marco Berghoff®, Jakob Rosenbauer?, and Alexander Schug?

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
E-mail: marco.berghoff@kit.edu

2 John von Neumann Institute for Computing and Jiilich Supercomputing Centre,
Institute for Advanced Simulation, Forschungszentrum Jiilich, 52425 Jiilich, Germany
E-mail: al.schug @fz-juelich.de

The temporal and spatial resolution in the microscopy of tissues has increased significantly
within the last years, yielding new insights into the dynamics of tissue development and the
role of single cells within it. Still, the theoretical description of the connection of single cell
processes to macroscopic tissue reorganisations is lacking. Especially in tumour development,
single cells play a crucial role in the advance of tumour properties. We developed a simu-
lation framework that can model tissue development up to the centimetre scale with micro-
metre resolution of single cells. Through parallelisation, it enables the efficient use of high-
performance computing systems, therefore enabling detailed simulations on 10.000s of cores.
Our generalised tumour model respects adhesion driven cell migration, cell-to-cell signalling,
and mutation-driven tumour heterogeneity. We scan the response of the tumour development
depending on division inhibiting substances such as cytostatic agents. Furthermore, we are
investigating the interaction with radiotherapy to find a suitable therapy plan. Currently, the
emergence of ever-more-powerful experimental techniques such as light sheet microscopy al-
ready offers unprecedented subcellular insight into tissue dynamics. Combined with powerful
machine learning techniques, such large data sets (TB’s +) can be effectively evaluated promis-
ing realistic parameters for our simulations for topics ranging from cancer development to em-
bryogenesis or morphogenesis with considerable impact both for basic science and applied
biomedical fields.

1 Model

Especially in tumour development, the behaviour of single cells plays a significant role
in the tumour characteristics and progression. This microscale can be essential for the
emergence of macroscopic tumour growth and the emergine tumour properties. Simulta-
neously, tumours that are clinically relevant consist of millions of cells thereby setting the
upper border for the simulated spatial resolution.

Over the last decade the theoretical and computational description of cell and tissue dy-
namics and processes has developed to be a valuable tool to complement experiments.' ™
Models are applied in embryogenesis and tissue patterning® as well as tumour develop-
ment®!! and treatment.'> '3 At the same time the experimental accessibility of entire tis-
sues and its properties has greatly increased through modern microscopic techniques such
as light-sheet microscopy'# and confocal microscopy!® as well as CRISPR techniques.!®
The combination of contemporary experimental techniques with the recent advances in
machine learning enables the analysis of large datasets in various spacial regimes!”!° and
translating the properties into model parameters.?® 2!

However, the computational models that are published so far either concentrate on the
detailed descriptions on a small number of cells or a coarse grained description of cells for
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Figure 1. A two-dimensional schematic diagram shows the three different model levels. The lowest layer, the
microscale, contains a grid based cellular Potts model to model tissue dynamics. On the highest layer, the
macroscale, an agent-based model is acting. In between, on the mesoscale, the transport of signals is processed.

larger tissues. To be able to simulate both, the individual cellular geometry as well as the
macroscopic tumour a high degree of parallelism is needed, which we introduce with our
model. We use the massively parallel NAStJA framework?> 23 to implement a multi-model
solver with a cell-geometric resolution for the simulation of tissue growth in general and
cancer in particular.

The model consists of three layers to accommodate for this large spatial range. On
the microscale layer a cellular Potts model simulates adhesion driven cell movements, cell
dynamics and cell-to-cell interactions. On the most coarse layer, an agent-based model is
used, where each cell corresponds to one agent. On this macroscale layer, the signals are
processed, and cell death and cell division, including mutations, are simulated. Another
model layer lies between these two scales. It represents the mesoscale and ensures signal
diffusion through the surfaces of the cells. Fig. 1 shows an overview of the different model
levels. Following the three model layers are described in detail. Each model layer acts on
its specific scale.

Microscale The model is based on a regular rectangular grid. Each voxel has an integer
number that represents the cell ID. All voxels with the same cell ID are assigned to a
biological cell. The cellular Potts model is a Monte Carlo method:** The system evolves
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Figure 2. Diffusion of the nutrient signal, the four black squares are blood vessels, that supply the nutrient.
Yellow cells have high nutrient concentrations and blue ones low.

under random changes of nearest-neighbour voxels at cell surfaces. These changes are
accepted according to a Metropolis acceptance criterion. A Hamiltonian defines the energy
of the system. It is the sum of several energy functions:

Hepy = Z Z Jr(ci),r(c;)(l - 5(%9")) 6]
1€Q JEN (i)
+A ) (v(s) = Vir(s)
ieQ
+A Y (s(s) = S(r(s)?
ieQ

Here, the first sum corresponds to the cell adhesion, the second to the volume, and
the last corresponds to the surface of individual cells. While the system evolves, each
cell has a target volume V' and a target surface S. Possible Monte-Carlo steps are nearest
neighbour interactions of adjacent grid points, leading to small changes on the cells surface
geometries. Therefore the Monte-Carlo propagation of the system corresponds to a time
step, that can be mapped to a physical time. This is modelled by the energy minimisation
of the whole non-steady-state system. The implementation of the Hamiltonian is versatile
so that the single terms of the energy can be replaced by other terms, e. g. different kinds
of volume estimations. Besides, the energy sum can be extended by several other terms,
e. g. adaption to a local or global potential (introduced by the Glazier-Graner-Hogeweg
model?).

Mesoscale On this scale, the diffusion of signals is simulated. Signals can be among others
oxygen, nutrients or therapeutic drugs. Based on the common surface with neighbouring
cells, the signals diffuse from one cell to the other, see Fig. 2.
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Macroscale At the most coarse level, each cell is assigned to an agent. The individual
agents are then responsible for signal processing, e. g. usage of nutrient, producing of sig-
nals. These agents also control the cell cycle of the individual cell. Events such as cell
death and cell division can be induced depending on internal and external parameters of
the cell, such as the signal concentration, cell age and therapeutic agents. A set of cell types
is defined, each cell type has a specific set of parameters, determining the behaviour of the
individual cell belonging to that cell type. Parameters of a single cell type include micro,
meso, and macroscale parameters such as the target volume and surface V, S, as well
as division rate pg;, and diffusion constants D, erc. After cell division, cells may mutate,
depending on external parameters as well as predefined rates. A mutation alters the cell
properties, which is implemented by a change of the cell type with defined transition rates
between each cell type. The agents take the domain distribution into account and can thus
perform cell division correctly, even if the geometric resolution of the cell is distributed
over several processes.

2 Scaling

The code is implemented within the NAStJA framework so that it can benefit directly from
the excellent scalability. The domain is divided into subdomains and distributed to the MPI
ranks. Each MPI rank then holds a block containing the field on the microscale with the
cell IDs and additional cell data, which are held for the higher scales, per cell. After each
calculation sweep, a halo exchange to the first 26 neighbour blocks is used for the field
of cell IDs. Initially, the additional data of the cells must be exchanged globally, since it
is not known where the cells are located. That would result in a poorly-scaling collective
communication. Domain knowledge about the size of the cells gives the possibility to
chose the size of the blocks at least three-fold larger compared to the cells. With this, it
can be ensured that a cell is never distributed over more than eight blocks, i. e. two per
dimension, at the same time, compare Fig. 3. With this knowledge, it can be ensured that

a) 1 1 b) 1

Figure 3. A cell (blue) is distributed to several blocks. (a) shows an inadequate distribution and (b) shows an
allowed distribution.

the bookkeeping of the additional data can be handled by local communications to the
next 26 neighbours. The efficiency of this exchange is excellent, as shown in Fig. 4(a).
Fig. 4(b) right shows an efficiency of > 80 % for blocks with an edge length of 100 and
even an efficiency of > 90 % for an edge length of 200. This result was measured on
JURECA with up to 256 nodes corresponding to 6144 processes.
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Figure 4. (a) The efficiency of the data exchange on ForHLR II and (b) the efficiency for the whole simulation
on JURECA, using up to 256 nodes with 24 cores each. It is shown for a subdomain distribution with a block
edge length of 100 and 200.

3 Application

To validate our model implementation we model adhesion driven cell sorting, as it was
described in two dimensions in the initial paper of Graner and Glazier.?* We use a three-
dimensional spherical arrangement of randomly mixed cells. Two cell types with differ-
ential adhesion are introduced and randomly assigned to the cells. The cell-to-cell adhe-
sion of cells belonging to the same cell type is larger than the adhesion between different
cell types. This leads to a demixing of the cell types and formation of clusters as can
be seen in Fig. 5. Reproducing the expected behaviour and showing accordance of our
three-dimensional implementation with the initial two-dimensional model.

We apply the model on the growth of heterogeneous tumours. A domain is filled with
non-dividing tissue cells, that make up the surrounding in which the tumour develops. Each
cell has a volume of about 1000 voxels. A network of blood vessels spanning the entire
domain is introduced and serves as the source of nutrients and medication. A small nucleus
of cancer cells is placed in the centre of the simulated tissue. The cancerous cells prolif-
erate and develop a tumour through cell division. Cells divide when abundant nutrition
is present, leading to an increased growth adjacent to blood vessels and hypoxic regions
where is a sparse vascularisation. In hypoxic regions cell-division is down-regulated while
cell death is up-regulated leading to a negative growth.

Tumour cells can mutate after cell division into one of the 30 predefined cell types.
Each cell type provides different properties and therefore enhances or hinders the prop-
agation of the tumour depending on the localisation within the tissue. A heterogeneous
tumour forms with its composition of sub-populations of different cell types depending on
external conditions. Tumour heterogeneity is a pivotal property of tumours since it enables
the specialisation and adaptation of the tumour and leads to complications in tumour treat-
ment. In order to recreate those properties observed in vivo, two different treatment types
are incorporated into our model:
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Figure 5. Adhesion driven cell sorting. Time evolution of a two dimensional slice of the three dimensional
simulation. The colours represent different cell types. Times are initial condition and after 20 - 105, 45 - 106 and
110 - 10% Monte Carlo sweeps.

Chemotherapy is realised by the introduction of a cytostatic drug that down-regulates cell-
division. The drug is distributed via the blood vessels. Since only cell-division is affected
by the drug, the tumour shrinks due to cell-death still being present.

Radiation therapy reduces the division rate globally and immediately initiates the
cell-death of a fraction of the tumour cells.

With these mechanisms established, treatments can then be optimised for different tu-
mours. This is done by scanning different treatment protocols such as single pulse, mul-
tiple pulses and combinations of chemo- and radiotherapy. The effect on the total tumour
volume as well as the tumour composition is analysed and can give valuable information
about the generation of heterogeneity development of a tumour. This is illustrated in Fig. 6,
where chemo- or radiotherapy individually do not lead to success, but a combination does.
Multiple pulses of chemo- or radiotherapy lead to the development of a nearly homoge-
neous tumour, with one dominating cell type.

4 Conclusion

We were able to show that with a highly parallel framework and a multiscale model, the
development of tumours can be simulated. We are able to simulate heterogeneous tumour
growth and development in a domain measuring 1000 x 1000 x 1000 voxels corresponding
to a tissue of 1 mm?®. The cell-geometric resolution was chosen to reproduce the tumour
characteristics, which depend significantly on the adhesion between the individual cells.
Besides, we have shown that different treatments can be performed. Thus, many different
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Figure 6. Change of volume of the tumour under different treatment plans of chemotherapy and radiation, single
or in combination. The colours represent different cell types.

treatment plans can be simulated before the treatment on the patient, and then the best one
can be selected for the patient.

Due to the flexibility of the framework, the model can be easily extended, and further
effects can be considered, in future versions.
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