000874353 001__ 874353
000874353 005__ 20230815122841.0
000874353 0247_ $$2doi$$a10.1002/vzj2.20009
000874353 0247_ $$2Handle$$a2128/24504
000874353 0247_ $$2altmetric$$aaltmetric:77466242
000874353 0247_ $$2WOS$$aWOS:000618773300009
000874353 037__ $$aFZJ-2020-01385
000874353 082__ $$a550
000874353 1001_ $$0P:(DE-Juel1)168418$$aBrogi, C.$$b0$$eCorresponding author
000874353 245__ $$aSimulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics‐based quantitative soil information
000874353 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2020
000874353 3367_ $$2DRIVER$$aarticle
000874353 3367_ $$2DataCite$$aOutput Types/Journal article
000874353 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1590648179_19310
000874353 3367_ $$2BibTeX$$aARTICLE
000874353 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874353 3367_ $$00$$2EndNote$$aJournal Article
000874353 520__ $$aAgroecosystem models that simulate crop growth as a function of weather conditions and soil characteristics are among the most promising tools for improving crop yield and achieving more sustainable agricultural production systems. This study aims at using spatially distributed crop growth simulations to investigate how field-scale patterns in soil properties obtained using geophysical mapping affect the spatial variability of soil water content dynamics and growth of crops at the square kilometer scale. For this, a geophysics-based soil map was intersected with land use information. Soil hydraulic parameters were calculated using pedotransfer functions. Simulations of soil water content dynamics performed with the agroecosystem model AgroC were compared with soil water content measured at two locations, resulting in RMSE of 0.032 and of 0.056 cm3 cm−3, respectively. The AgroC model was then used to simulate the growth of sugar beet (Beta vulgaris L.), silage maize (Zea mays L.), potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.), and winter rapeseed (Brassica napus L.) in the 1- by 1-km study area. It was found that the simulated leaf area index (LAI) was affected by the magnitude of simulated water stress, which was a function of both the crop type and soil characteristics. Simulated LAI was generally consistent with the observed LAI calculated from normalized difference vegetation index (LAINDVI) obtained from RapidEye satellite data. Finally, maps of simulated agricultural yield were produced for four crops, and it was found that simulated yield matched well with actual harvest data and literature values. Therefore, it was concluded that the information obtained from geophysics-based soil mapping was valuable for practical agricultural applications.
000874353 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000874353 536__ $$0G:(GEPRIS)15232683$$aDFG project 15232683 - TRR 32: Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation $$c15232683$$x1
000874353 588__ $$aDataset connected to CrossRef
000874353 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b1
000874353 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b2
000874353 7001_ $$0P:(DE-Juel1)129553$$aWeihermüller, L.$$b3
000874353 7001_ $$0P:(DE-Juel1)159313$$aKlosterhalfen, A.$$b4
000874353 7001_ $$0P:(DE-Juel1)129506$$aMontzka, C.$$b5
000874353 7001_ $$00000-0002-5062-6218$$aReichenau, T. G.$$b6
000874353 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b7
000874353 773__ $$0PERI:(DE-600)2088189-7$$a10.1002/vzj2.20009$$gVol. 19, no. 1$$n1$$pe200009$$tVadose zone journal$$v19$$x1539-1663$$y2020
000874353 8564_ $$uhttps://juser.fz-juelich.de/record/874353/files/Invoice_R-2020-00374.pdf
000874353 8564_ $$uhttps://juser.fz-juelich.de/record/874353/files/Brogi_VZJ_2020.pdf$$yOpenAccess
000874353 8564_ $$uhttps://juser.fz-juelich.de/record/874353/files/Brogi_VZJ_2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874353 8564_ $$uhttps://juser.fz-juelich.de/record/874353/files/Invoice_R-2020-00374.pdf?subformat=pdfa$$xpdfa
000874353 8767_ $$8R-2020-00374$$92020-05-26$$d2020-05-29$$eAPC$$jDeposit$$lDEAL: Wiley$$pVZJ-2019-09-0098-ORA.R1$$zBelegnr. 1200153579
000874353 909CO $$ooai:juser.fz-juelich.de:874353$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000874353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168418$$aForschungszentrum Jülich$$b0$$kFZJ
000874353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b1$$kFZJ
000874353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129469$$aForschungszentrum Jülich$$b2$$kFZJ
000874353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129553$$aForschungszentrum Jülich$$b3$$kFZJ
000874353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b5$$kFZJ
000874353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b7$$kFZJ
000874353 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000874353 9141_ $$y2020
000874353 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874353 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874353 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2017
000874353 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874353 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874353 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874353 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874353 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000874353 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874353 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874353 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000874353 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000874353 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000874353 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000874353 920__ $$lyes
000874353 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000874353 980__ $$ajournal
000874353 980__ $$aVDB
000874353 980__ $$aI:(DE-Juel1)IBG-3-20101118
000874353 980__ $$aAPC
000874353 980__ $$aUNRESTRICTED
000874353 9801_ $$aAPC
000874353 9801_ $$aFullTexts