001     874353
005     20230815122841.0
024 7 _ |a 10.1002/vzj2.20009
|2 doi
024 7 _ |a 2128/24504
|2 Handle
024 7 _ |a altmetric:77466242
|2 altmetric
024 7 _ |a WOS:000618773300009
|2 WOS
037 _ _ |a FZJ-2020-01385
082 _ _ |a 550
100 1 _ |a Brogi, C.
|0 P:(DE-Juel1)168418
|b 0
|e Corresponding author
245 _ _ |a Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics‐based quantitative soil information
260 _ _ |a Alexandria, Va.
|c 2020
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1590648179_19310
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Agroecosystem models that simulate crop growth as a function of weather conditions and soil characteristics are among the most promising tools for improving crop yield and achieving more sustainable agricultural production systems. This study aims at using spatially distributed crop growth simulations to investigate how field-scale patterns in soil properties obtained using geophysical mapping affect the spatial variability of soil water content dynamics and growth of crops at the square kilometer scale. For this, a geophysics-based soil map was intersected with land use information. Soil hydraulic parameters were calculated using pedotransfer functions. Simulations of soil water content dynamics performed with the agroecosystem model AgroC were compared with soil water content measured at two locations, resulting in RMSE of 0.032 and of 0.056 cm3 cm−3, respectively. The AgroC model was then used to simulate the growth of sugar beet (Beta vulgaris L.), silage maize (Zea mays L.), potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.), and winter rapeseed (Brassica napus L.) in the 1- by 1-km study area. It was found that the simulated leaf area index (LAI) was affected by the magnitude of simulated water stress, which was a function of both the crop type and soil characteristics. Simulated LAI was generally consistent with the observed LAI calculated from normalized difference vegetation index (LAINDVI) obtained from RapidEye satellite data. Finally, maps of simulated agricultural yield were produced for four crops, and it was found that simulated yield matched well with actual harvest data and literature values. Therefore, it was concluded that the information obtained from geophysics-based soil mapping was valuable for practical agricultural applications.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|x 0
|f POF III
536 _ _ |a DFG project 15232683 - TRR 32: Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation
|0 G:(GEPRIS)15232683
|c 15232683
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huisman, J. A.
|0 P:(DE-Juel1)129472
|b 1
700 1 _ |a Herbst, M.
|0 P:(DE-Juel1)129469
|b 2
700 1 _ |a Weihermüller, L.
|0 P:(DE-Juel1)129553
|b 3
700 1 _ |a Klosterhalfen, A.
|0 P:(DE-Juel1)159313
|b 4
700 1 _ |a Montzka, C.
|0 P:(DE-Juel1)129506
|b 5
700 1 _ |a Reichenau, T. G.
|0 0000-0002-5062-6218
|b 6
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 7
773 _ _ |a 10.1002/vzj2.20009
|g Vol. 19, no. 1
|0 PERI:(DE-600)2088189-7
|n 1
|p e200009
|t Vadose zone journal
|v 19
|y 2020
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/874353/files/Invoice_R-2020-00374.pdf
856 4 _ |u https://juser.fz-juelich.de/record/874353/files/Brogi_VZJ_2020.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/874353/files/Brogi_VZJ_2020.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/874353/files/Invoice_R-2020-00374.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:874353
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168418
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129469
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129553
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21