000874364 001__ 874364
000874364 005__ 20240610121100.0
000874364 0247_ $$2doi$$a10.1063/1.5142400
000874364 0247_ $$2ISSN$$a0003-6951
000874364 0247_ $$2ISSN$$a1077-3118
000874364 0247_ $$2ISSN$$a1520-8842
000874364 0247_ $$2Handle$$a2128/24467
000874364 0247_ $$2WOS$$aWOS:000519609100001
000874364 037__ $$aFZJ-2020-01387
000874364 082__ $$a530
000874364 1001_ $$0P:(DE-HGF)0$$aPavlovskiy, V. V.$$b0
000874364 245__ $$aWideband detection of electromagnetic signals by high- T c Josephson junctions with comparable Josephson and thermal energies
000874364 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2020
000874364 3367_ $$2DRIVER$$aarticle
000874364 3367_ $$2DataCite$$aOutput Types/Journal article
000874364 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583398645_29620
000874364 3367_ $$2BibTeX$$aARTICLE
000874364 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874364 3367_ $$00$$2EndNote$$aJournal Article
000874364 520__ $$aDetection mechanisms in Josephson junctions with energies Ej comparable to thermal energies kT have been studied. The responses ΔV of YBa2Cu3O7−x bicrystal junctions to monochromatic radiation with frequencies f ranging from 94 GHz to 3.1 THz can be described in terms of classical rectification on a static nonlinear V–I curve at low frequencies and frequency modulation of the ac Josephson current at high frequencies, with an interplay between these mechanisms at intermediate frequencies. An electrical noise-equivalent power of (9 ± 3) × 10−15 W/Hz1/2, a responsivity of (3.4 ± 0.5) × 105 V/W, and a dynamic power range of 5 × 104 have been demonstrated for the square-law classical detection of 94 GHz radiation with the junctions at 50 K. The effect of background radiation on the V–I curves of YBa2Cu3O7−x bicrystal junctions was found to have an optical noise-equivalent temperature of ≤30 mK/Hz1/2. The main contribution to the effect comes from the interplay between the classical and Josephson detection mechanisms. The spectral and power dependencies of the responses ΔV of Josephson junctions have been numerically simulated within the resistively shunted junction model at various values of kT/Ej, and the results are in acceptable agreement with the experimental data.
000874364 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000874364 588__ $$aDataset connected to CrossRef
000874364 7001_ $$0P:(DE-Juel1)144210$$aGundareva, I. I.$$b1
000874364 7001_ $$0P:(DE-HGF)0$$aVolkov, O. Y.$$b2
000874364 7001_ $$0P:(DE-Juel1)130621$$aDivin, Y. Y.$$b3$$eCorresponding author
000874364 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.5142400$$gVol. 116, no. 8, p. 082601 -$$n8$$p082601 -$$tApplied physics letters$$v116$$x1077-3118$$y2020
000874364 8564_ $$uhttps://juser.fz-juelich.de/record/874364/files/1.5142400.pdf$$yPublished on 2020-02-25. Available in OpenAccess from 2021-02-25.
000874364 8564_ $$uhttps://juser.fz-juelich.de/record/874364/files/1.5142400.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-25. Available in OpenAccess from 2021-02-25.
000874364 8564_ $$uhttps://juser.fz-juelich.de/record/874364/files/Divin_Wideband%20detection_APL.pdf$$yOpenAccess
000874364 8564_ $$uhttps://juser.fz-juelich.de/record/874364/files/Divin_Wideband%20detection_APL.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874364 909CO $$ooai:juser.fz-juelich.de:874364$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144210$$aForschungszentrum Jülich$$b1$$kFZJ
000874364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130621$$aForschungszentrum Jülich$$b3$$kFZJ
000874364 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000874364 9141_ $$y2020
000874364 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874364 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874364 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000874364 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2017
000874364 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874364 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874364 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874364 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874364 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874364 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874364 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000874364 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874364 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000874364 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874364 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874364 920__ $$lyes
000874364 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000874364 9801_ $$aFullTexts
000874364 980__ $$ajournal
000874364 980__ $$aVDB
000874364 980__ $$aUNRESTRICTED
000874364 980__ $$aI:(DE-Juel1)PGI-5-20110106
000874364 981__ $$aI:(DE-Juel1)ER-C-1-20170209