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In computational condensed matter physics, the influx of algorithms from machine learning

and their combination with traditional numerical many-body approaches is one of the most

enticing recent developments. At this confluence novel techniques have been developed that

allow to characterise many-body wave functions and discriminate quantum phase of matter by

adapting concepts from computer science and statistics, which have proved tremendously prac-

tical in completely different contexts. However, in order to actually turn into a productive and

widely accepted tool for obtaining a deeper understanding of microscopic physics these novel

approaches must allow for meaningful, comprehensible inference and go beyond the applica-

bility of their traditional counterparts. In this contribution, we report on significant progress

made in this direction by discussing a novel algorithmic scheme using machine learning tech-

niques to numerically infer the transport properties of quantum many-fermion systems. This

approach is based on a quantum loop topography (QLT), and capable of distinguishing conven-

tional metallic and superconducting transport in quantum Monte Carlo simulations by learning

current-current correlations from equal-time Green’s functions. We showcase this approach

by studying the emergence of s- and d-wave superconducting fluctuations in the negative-U

Hubbard model and a spin-fermion model for a metallic quantum critical point. The presented

results, combined with the numerical efficiency of the QLT approach, point a way to identify

hitherto elusive transport phenomena such as non-Fermi liquids using machine learning algo-

rithms.

1 Introduction

State-of-the art machine learning techniques have not only become ubiquitous in our daily

life (sorting emails, suggesting movies to watch, or identifying users by the touch of a

button or the scan of a face), they also promise to become a powerful tool in quantum

statistical mechanics. Their core functions – dimensional reduction and feature extraction

– are a perfect match to the goal of identifying essential characteristics of a quantum many-

body system, which are often hidden in the exponential complexity of its many-body wave-

function or the abundance of potentially revealing correlation functions. The basic idea of

interpreting collective states of matter, such as superfluids, superconductors, or insulating

quantum liquids, as a source of complex data with unknown intrinsic structure immediately

opens up all of condensed matter physics as a playground for established machine learning

algorithms implementing supervised, unsupervised, or reinforcement learning schemes.

Groundbreaking initial steps in this direction1 have demonstrated that convolutional

neural networks can indeed be trained to learn sufficiently many features from the corre-

lation functions of classical and quantum many-body systems2 such that distinct phases of

matter can be discriminated and the parametric location of the phase transition between

them identified. In parallel, it has been demonstrated that machine learning of wave func-

tions is possible,3, 4 which can lead to a variational representation of quantum states based

on artificial neural networks like restricted Boltzmann machines that, for some cases, out-
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performs entanglement-based variational representations.3 In a parallel development, ef-

forts to integrate machine learning perspectives into established numerical schemes have

led to many methodological improvements such as new quantum Monte Carlo flavours

with dramatically reduced autocorrelation times.5, 6

This contribution reports on recent progress made in the use of machine learning to

identify transport characteristics of itinerant electron systems. We will showcase that an

innovative technique dubbed “quantum loop topography” (QLT), initially introduced by

Eun-Ah Kim’s group at Cornell to detect topological order in integer and fractional Chern

insulators,7 is capable of reliably distinguishing conventional metallic and superconduct-

ing transport by machine learning the essential features of longitudinal imaginary time

current-current correlations. It should be noted that electronic transport properties are no-

toriously difficult to calculate – in the context of Monte Carlo approaches this typically

asks for an analytic continuation, which is numerically ill posed, yielding no controlled

framework to probe transport properties. As such, the QLT approach offers an intriguing

alternative that is also vastly more efficient; the scaling of the computational cost differs by

multiple orders of the considered system size. When compared to other machine learning

protocols for quantum state recognition, the QLT stands out as a preprocessing step that, by

using a correlation loop topography as a filter, selects and organises the input data with the

physical response characteristic of the target phase in mind. It thereby distinguishes itself

from, e. g. the application of convolutional neural networks (CNNs) whose motivation has

been primarily rooted in image recognition techniques. Crucially, while making equally

good transport predictions as CNNs, QLT requires a considerably smaller fraction of the

input data, which is given by equal-time Green’s functions produced in quantum Monte

Carlo simulations. It has thereby become the method-of-choice for future applications in

quantum statistical physics.

Although QLT is generally applicable, we will restrict our demonstration in this article

to the particularly interesting case of transport in a quantum critical metal.8 In the vicinity

of an antiferromagnetic quantum critical point, which marks the onset of magnetic order at

zero temperature, quantum critical fluctuations can interact with gapless excitations on a

finite Fermi surface. In previous work, our group has established in numerically exact stud-

ies9–12 of sign-free microscopic models that this interplay can give rise to novel non-Fermi

liquid regimes and can lead to the emergence of unconventional d-wave superconductivity,

making it a candidate mechanism responsible for some of the physics of many actively re-

search materials such as the electron-cuprates, iron-pnictides, and heavy fermion materials

- the high-temperature superconductors. We have reported on these activities in a previ-

ous contribution to this series.13 As we will show in this article, QLT offers a new route

for the exploration of transport properties across the phase diagram of such quantum crit-

ical metals8 – an insight made possible through our large-scale simulations on the Jülich

supercomputing facilities.

2 From Convolutional Neural Networks to Quantum Loop

Topography

Arguably, one of the most striking applications of machine learning is pattern recogni-

tion in images, the prime examples being handwritten digit classification - for instance
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Figure 2. Illustration of the (i) triangular and (ii) quadralateral loop operators employed in the loop topography

of the longitudinal current-current correlation function. Taken from Ref. 8.

proach, which employed a supervised learning strategy can be further generalised into an

unsupervised setting, where the number of distinguishable quantum phases is not a priori

known and learned in the process14 – allowing for a semi-automatic determination of entire

phase diagrams.

Some of the more intriguing many-fermion states like superconducting states and topo-

logically ordered states, however, ask for more sophisticated, tailor-made “physics filters”

in lieu of the simple convolutional layers in order to allow for a deeper understanding.

In a recent work,8 we have expanded one such approach dubbed “quantum loop topogra-

phy” (QLT) by its developers,7 which substitutes the generic convolutional layers by a loop

topography scheme based on the specific physical response function of interest. More con-

cretely, targeting longitudinal transport properties we consider the zero-frequency current-

current correlation function

Λxx(r1, r2;ωn = 0) ≡

∫
dτ

〈
ĵx (r1, τ) ĵx (r2, 0)

〉
(1)

where ĵx(r1, τ) = eHτ ĵx(r1)e
−Hτ with the current density operator ĵx(r1) =

−i[H(r1), x̂]. The Fourier transform of Λxx is famously related to the superfluid density

ρs which, when surpassing a certain critical value, indicates superconducting transport.15

For a gapped system it can readily be shown8 that the current-current correlation at zero

temperature breaks into a weighted combination of four-vertex loops and triangular loops

of Green’s functions Pr′r = 〈c†r′cr〉,

Λxx(r1, r2;ωn=0) =
∑

r3r4

Pr2r4Pr4r1Pr1r3Pr3r2 (x1 − x4) (x2 − x3)

−
∑

r4

Pr2r4Pr4r1Pr1r2 (x1 − x4) (x2 − x1)
(2)

The key idea of QLT is to approximate these current-current correlations by small loop

operators (Fig. 2),

L△
jkl ≡ P̃jk|αP̃kl|βP̃lj |γ (3)

and

L�
jklm ≡ P̃jk|α′ P̃kl|β′ P̃lm|γ′ P̃mj |δ′ (4)
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in which the Green’s functions P̃jk|α are typically obtained from individual samples α of

quantum Monte Carlo simulations. Pictorially, as shown in Fig. 1a, the QLT amounts to

constructing a loop vector field from the expectation values of L△
jkl and L�

jklm for different

lattice sites in a preprocessing step before feeding the loop topography information into

a regular feed-forward neural network. By processing the loop operators during the sam-

pling process and avoiding an a posteriori Monte Carlo averaging, we quickly pass these

fluctuation-laden data, which encodes partial information of the current-current correlation

function, to the machine learning step.

Compared to regular convolutional layers, the QLT as a preprocessing unit has two

important advantages. First, since being based on a particular physical correlation function,

the information that is passed to the FFNN is transparent and physical. Hence one can draw

inferences about the importance of certain physical correlations and can systematically

improve the predictive powers of QLT by including higher order loop operators. Second,

the QLT approach is vastly more efficient as it operates only a small fraction of the full

Green’s function data: in two spatial dimensions it scales as L2 × D(dc), where L is the

linear system size and D(dc) denotes the loop vector dimension for a given maximal loop

length dc, compared to the fullL2×L2 information. Remarkably, as we demonstrate below,

this increased efficiency does not come with a loss in prediction accuracy and thus gives

QLT a significant competitive edge over CNNs in transport characterisation applications.

3 Quantum Criticality in a Nearly Antiferromagnetic Metal

To showcase the power of the QLT approach for extracting transport characteristics of

itinerant electron systems, we will apply it to the case of a two-dimensional metal near the

onset of commensurate antiferromagnetic spin-density wave (SDW) order. Quantum phase

transitions in metals pose a substantial theoretical and computational challenge since, in

contrast to insulating systems, the order parameter modes can interact with gapless fermion

excitations. The quantum critical physics of the system can be captured11 by an effective

Euclidean action S = Sψ +Sφ+Sλ in terms of fermionic operators ψ†, ψ (spin and other

indices are left implicit) with dispersion ǫk and chemical potential µ coupled to a bosonic

order parameter φ,

Sψ =

∫

τ,k

ψ†
k (∂τ + ǫk − µ)ψk

Sφ =

∫

τ,x

[
r

2
φ2 +

1

2
(∇φ)

2
+

1

2c2
(∂τφ)

2
+
u

4
(φ2)2

]
(5)

Sλ = λ

∫

τ,x

eiQ·x~φ · ψ†(x)~σψ(x) + h.c.

Here, ~σ are spin Pauli matrices, Q = (π, π) is the antiferromagnetic ordering wavevector

and ~φ is a 1-, 2-, or 3-component vector (depending on whether the SDW order parame-

ter has easy-axis, easy-plane, or isotropic character, respectively). Sφ is a usual Landau-

Ginzburg-Wilson φ4-theory, written as an expansion in powers of the order parameter φ
and its derivatives, where the tuning parameter r drives the system through a quantum crit-

ical point (QCP). The interaction term, Sλ, is of Yukawa type, linear in φ and quadratic in

the fermion operators.
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As usual, the central quantity of interest is the partition function Z =∫
D

(
ψ,ψ†, ϕ

)
e−S which after tracing out the fermion degrees of freedom can be written

in determinant quantum Monte Carlo (DQMC) form as16

Z =

∫
Dϕ e−Sϕ detG−1

φ +O
(
∆τ2

)
(6)

Here, Gφ = P̃jk|φ = 〈ψjψ
†
k〉φ is the equal-time Green’s function and ∆τ2 is the usual

controlled Trotter decomposition error.

Generally, quantum Monte Carlo simulations of the partition function for a model of

interacting fermions will be hindered by a severe fermion-sign-problem - the integral kernel

cannot be safely interpreted as a probability weight, asGφ and its determinant are complex

valued. However, as identified by Erez Berg and collaborators in a seminal work,17 this

issue is lifted for model (5) by an intrinsic anti-unitary symmetry (much like time reversal)

which renders it amenable to a numerically exact analysis.

As our group was able to show in the first unbiased, numerically exact studies9, 12 of

model (5), which have been conducted on the JURECA and JUWELS supercomputers

over multiple funding periods (see also our contribution13 to this series in 2018), the phase

diagram of the antiferromagnetic quantum critical metal clearly reveals a dome-shaped

d-wave superconducting phase with a comparably high superconducting transition temper-

ature Tc ≈ EF /30 compared to BCS theory (see the inset of Fig. 3). This transition from

metallic to superconducting transport, which has been established by (costly) explicit cal-

culations of the superfluid density, serves as a real-world benchmark for the QLT approach.

Applying a supervised learning scheme, we consider a finite-temperature scan cutting

into the superconducting dome close to the maximal Tc and train a basic feed-forward

neural network on QLT preprocessed equal-time loop correlations (Fig. 1a) at the extremal

temperatures T ≈ 0.2 and T ≈ 0.03, where the system shows regular metallic and su-

perconducting transport character, respectively. In Fig. 3 we show the neural output of the

QLT architecture, which quantifies the confidence that the metal is in a superconducting

phase, as a function of the inverse temperature. Clearly, the QLT model is able to reliably

distinguish both transport regimes in the high and low temperature limits. Furthermore,

it correctly identifies superconducting transport properties over an extended temperature

range, as indicated by a high-confidence plateau. Remarkably, the entire trend of the neu-

ral output is in great agreement with quantum Monte Carlo results:9 the notable increase of

the confidence coincides with the onset of diamagnetic superconducting fluctuations (grey

shaded region) before it indicates an extended superconducting phase at low temperatures,

β > βc ≈ 12.5 (dashed line). In comparison to a conventional CNN (Fig. 3), which has

been trained on the entire equal-time Green’s function data, the QLT analysis provides

similar accuracy while only relying on a subset of the data, namely physical small-loop

correlations (Fig. 2). Overall, these findings suggest that the QLT model has efficiently

identified and captured the superconducting transport characteristics across the phase dia-

gram.

4 Concluding Remarks

In this article we have reported on a recent advance in the application of machine learn-

ing in condensed matter research: the probing of transport properties in itinerant quantum
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