000874375 001__ 874375
000874375 005__ 20210130004648.0
000874375 0247_ $$2doi$$a10.1021/acs.jpcc.9b11716
000874375 0247_ $$2ISSN$$a1932-7447
000874375 0247_ $$2ISSN$$a1932-7455
000874375 0247_ $$2Handle$$a2128/26046
000874375 0247_ $$2WOS$$aWOS:000517672900057
000874375 037__ $$aFZJ-2020-01397
000874375 082__ $$a530
000874375 1001_ $$0P:(DE-Juel1)168174$$aMennicken, Max$$b0$$ufzj
000874375 245__ $$aTransport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices
000874375 260__ $$aWashington, DC$$bSoc.$$c2020
000874375 3367_ $$2DRIVER$$aarticle
000874375 3367_ $$2DataCite$$aOutput Types/Journal article
000874375 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604572740_4612
000874375 3367_ $$2BibTeX$$aARTICLE
000874375 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874375 3367_ $$00$$2EndNote$$aJournal Article
000874375 520__ $$aTransition metal complexes are electrofunctional molecules due to their high conductivity and their intrinsic switching ability involving a metal-to-ligand charge transfer. Here, a method is presented to contact reliably a few to single redox-active Ru-terpyridine complexes in a CMOS compatible nanodevice and preserve their electrical functionality. Using hybrid materials from 14 nm gold nanoparticles (AuNP) and bis-{4′-[4-(mercaptophenyl)-2,2′:6′,2″-terpyridine]}-ruthenium(II) complexes a device size of 302 nm2 inclusive nanoelectrodes is achieved. Moreover, this method bears the opportunity for further downscaling. The Ru-complex AuNP devices show symmetric and asymmetric current versus voltage curves with a hysteretic characteristic in two well separated conductance ranges. By theoretical approximations based on the single-channel Landauer model, the charge transport through the formed double-barrier tunnel junction is thoroughly analyzed and its sensibility to the molecule/metal contact is revealed. It can be verified that tunneling transport through the HOMO is the main transport mechanism while decoherent hopping transport is present to a minor extent.
000874375 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000874375 588__ $$aDataset connected to CrossRef
000874375 7001_ $$0P:(DE-HGF)0$$aPeter, Sophia K.$$b1
000874375 7001_ $$00000-0003-1194-5192$$aKaulen, Corinna$$b2
000874375 7001_ $$00000-0002-6118-0573$$aSimon, Ulrich$$b3
000874375 7001_ $$0P:(DE-Juel1)130751$$aKarthäuser, Silvia$$b4$$eCorresponding author
000874375 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.9b11716$$gVol. 124, no. 8, p. 4881 - 4889$$n8$$p4881 - 4889$$tThe journal of physical chemistry <Washington, DC> / C C, Nanomaterials and interfaces$$v124$$x1932-7455$$y2020
000874375 8564_ $$uhttps://juser.fz-juelich.de/record/874375/files/Ru_Switch_SuppInfo_rev.pdf$$yPublished on 2020-02-05. Available in OpenAccess from 2021-02-05.
000874375 8564_ $$uhttps://juser.fz-juelich.de/record/874375/files/Ru_Switch_rev.pdf$$yPublished on 2020-02-05. Available in OpenAccess from 2021-02-05.
000874375 8564_ $$uhttps://juser.fz-juelich.de/record/874375/files/acs.jpcc.9b11716.pdf$$yRestricted
000874375 8564_ $$uhttps://juser.fz-juelich.de/record/874375/files/Ru_Switch_SuppInfo_rev.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-05. Available in OpenAccess from 2021-02-05.
000874375 8564_ $$uhttps://juser.fz-juelich.de/record/874375/files/Ru_Switch_rev.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-05. Available in OpenAccess from 2021-02-05.
000874375 8564_ $$uhttps://juser.fz-juelich.de/record/874375/files/acs.jpcc.9b11716.pdf?subformat=pdfa$$xpdfa$$yRestricted
000874375 909CO $$ooai:juser.fz-juelich.de:874375$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874375 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168174$$aForschungszentrum Jülich$$b0$$kFZJ
000874375 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130751$$aForschungszentrum Jülich$$b4$$kFZJ
000874375 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000874375 9141_ $$y2020
000874375 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874375 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000874375 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2017
000874375 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874375 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874375 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874375 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874375 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874375 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874375 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874375 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000874375 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000874375 980__ $$ajournal
000874375 980__ $$aVDB
000874375 980__ $$aUNRESTRICTED
000874375 980__ $$aI:(DE-Juel1)PGI-7-20110106
000874375 980__ $$aI:(DE-82)080009_20140620
000874375 9801_ $$aFullTexts