001     874375
005     20210130004648.0
024 7 _ |a 10.1021/acs.jpcc.9b11716
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a 2128/26046
|2 Handle
024 7 _ |a WOS:000517672900057
|2 WOS
037 _ _ |a FZJ-2020-01397
082 _ _ |a 530
100 1 _ |a Mennicken, Max
|0 P:(DE-Juel1)168174
|b 0
|u fzj
245 _ _ |a Transport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604572740_4612
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Transition metal complexes are electrofunctional molecules due to their high conductivity and their intrinsic switching ability involving a metal-to-ligand charge transfer. Here, a method is presented to contact reliably a few to single redox-active Ru-terpyridine complexes in a CMOS compatible nanodevice and preserve their electrical functionality. Using hybrid materials from 14 nm gold nanoparticles (AuNP) and bis-{4′-[4-(mercaptophenyl)-2,2′:6′,2″-terpyridine]}-ruthenium(II) complexes a device size of 302 nm2 inclusive nanoelectrodes is achieved. Moreover, this method bears the opportunity for further downscaling. The Ru-complex AuNP devices show symmetric and asymmetric current versus voltage curves with a hysteretic characteristic in two well separated conductance ranges. By theoretical approximations based on the single-channel Landauer model, the charge transport through the formed double-barrier tunnel junction is thoroughly analyzed and its sensibility to the molecule/metal contact is revealed. It can be verified that tunneling transport through the HOMO is the main transport mechanism while decoherent hopping transport is present to a minor extent.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Peter, Sophia K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kaulen, Corinna
|0 0000-0003-1194-5192
|b 2
700 1 _ |a Simon, Ulrich
|0 0000-0002-6118-0573
|b 3
700 1 _ |a Karthäuser, Silvia
|0 P:(DE-Juel1)130751
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcc.9b11716
|g Vol. 124, no. 8, p. 4881 - 4889
|0 PERI:(DE-600)2256522-X
|n 8
|p 4881 - 4889
|t The journal of physical chemistry / C C, Nanomaterials and interfaces
|v 124
|y 2020
|x 1932-7455
856 4 _ |y Published on 2020-02-05. Available in OpenAccess from 2021-02-05.
|u https://juser.fz-juelich.de/record/874375/files/Ru_Switch_SuppInfo_rev.pdf
856 4 _ |y Published on 2020-02-05. Available in OpenAccess from 2021-02-05.
|u https://juser.fz-juelich.de/record/874375/files/Ru_Switch_rev.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/874375/files/acs.jpcc.9b11716.pdf
856 4 _ |y Published on 2020-02-05. Available in OpenAccess from 2021-02-05.
|x pdfa
|u https://juser.fz-juelich.de/record/874375/files/Ru_Switch_SuppInfo_rev.pdf?subformat=pdfa
856 4 _ |y Published on 2020-02-05. Available in OpenAccess from 2021-02-05.
|x pdfa
|u https://juser.fz-juelich.de/record/874375/files/Ru_Switch_rev.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/874375/files/acs.jpcc.9b11716.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874375
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130751
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21