Home > Publications database > Transport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices > print |
001 | 874375 | ||
005 | 20210130004648.0 | ||
024 | 7 | _ | |a 10.1021/acs.jpcc.9b11716 |2 doi |
024 | 7 | _ | |a 1932-7447 |2 ISSN |
024 | 7 | _ | |a 1932-7455 |2 ISSN |
024 | 7 | _ | |a 2128/26046 |2 Handle |
024 | 7 | _ | |a WOS:000517672900057 |2 WOS |
037 | _ | _ | |a FZJ-2020-01397 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Mennicken, Max |0 P:(DE-Juel1)168174 |b 0 |u fzj |
245 | _ | _ | |a Transport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices |
260 | _ | _ | |a Washington, DC |c 2020 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1604572740_4612 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Transition metal complexes are electrofunctional molecules due to their high conductivity and their intrinsic switching ability involving a metal-to-ligand charge transfer. Here, a method is presented to contact reliably a few to single redox-active Ru-terpyridine complexes in a CMOS compatible nanodevice and preserve their electrical functionality. Using hybrid materials from 14 nm gold nanoparticles (AuNP) and bis-{4′-[4-(mercaptophenyl)-2,2′:6′,2″-terpyridine]}-ruthenium(II) complexes a device size of 302 nm2 inclusive nanoelectrodes is achieved. Moreover, this method bears the opportunity for further downscaling. The Ru-complex AuNP devices show symmetric and asymmetric current versus voltage curves with a hysteretic characteristic in two well separated conductance ranges. By theoretical approximations based on the single-channel Landauer model, the charge transport through the formed double-barrier tunnel junction is thoroughly analyzed and its sensibility to the molecule/metal contact is revealed. It can be verified that tunneling transport through the HOMO is the main transport mechanism while decoherent hopping transport is present to a minor extent. |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Peter, Sophia K. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Kaulen, Corinna |0 0000-0003-1194-5192 |b 2 |
700 | 1 | _ | |a Simon, Ulrich |0 0000-0002-6118-0573 |b 3 |
700 | 1 | _ | |a Karthäuser, Silvia |0 P:(DE-Juel1)130751 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.jpcc.9b11716 |g Vol. 124, no. 8, p. 4881 - 4889 |0 PERI:(DE-600)2256522-X |n 8 |p 4881 - 4889 |t The journal of physical chemistry |v 124 |y 2020 |x 1932-7455 |
856 | 4 | _ | |y Published on 2020-02-05. Available in OpenAccess from 2021-02-05. |u https://juser.fz-juelich.de/record/874375/files/Ru_Switch_SuppInfo_rev.pdf |
856 | 4 | _ | |y Published on 2020-02-05. Available in OpenAccess from 2021-02-05. |u https://juser.fz-juelich.de/record/874375/files/Ru_Switch_rev.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/874375/files/acs.jpcc.9b11716.pdf |
856 | 4 | _ | |y Published on 2020-02-05. Available in OpenAccess from 2021-02-05. |x pdfa |u https://juser.fz-juelich.de/record/874375/files/Ru_Switch_SuppInfo_rev.pdf?subformat=pdfa |
856 | 4 | _ | |y Published on 2020-02-05. Available in OpenAccess from 2021-02-05. |x pdfa |u https://juser.fz-juelich.de/record/874375/files/Ru_Switch_rev.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://juser.fz-juelich.de/record/874375/files/acs.jpcc.9b11716.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:874375 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168174 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130751 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS CHEM C : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|