000874378 001__ 874378
000874378 005__ 20220930130232.0
000874378 0247_ $$2doi$$a10.3389/fgene.2020.00154
000874378 0247_ $$2Handle$$a2128/24596
000874378 0247_ $$2altmetric$$aaltmetric:77958646
000874378 0247_ $$2pmid$$apmid:32194630
000874378 0247_ $$2WOS$$aWOS:000524682200001
000874378 037__ $$aFZJ-2020-01400
000874378 082__ $$a570
000874378 1001_ $$0P:(DE-Juel1)165626$$aNiedermaier, Stefan$$b0
000874378 245__ $$aPhotoprotective Acclimation of the Arabidopsis thaliana Leaf Proteome to Fluctuating Light
000874378 260__ $$aLausanne$$bFrontiers Media$$c2020
000874378 3367_ $$2DRIVER$$aarticle
000874378 3367_ $$2DataCite$$aOutput Types/Journal article
000874378 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585063461_3401
000874378 3367_ $$2BibTeX$$aARTICLE
000874378 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874378 3367_ $$00$$2EndNote$$aJournal Article
000874378 520__ $$aPlants are subjected to strong fluctuations in light intensity in their natural growth environment, caused both by unpredictable changes due to weather conditions and movement of clouds and upper canopy leaves and predictable changes during day-night cycle. The mechanisms of long-term acclimation to fluctuating light (FL) are still not well understood. Here, we used quantitative mass spectrometry to investigate long-term acclimation of low light-grown Arabidopsis thaliana to a FL condition that induces mild photooxidative stress. On the third day of exposure to FL, young and mature leaves were harvested in the morning and at the end of day for proteome analysis using a stable isotope labeling approach. We identified 2,313 proteins, out of which 559 proteins exhibited significant changes in abundance in at least one of the four experimental groups (morning-young, morning-mature, end-of-day-young, end-of-day-mature). A core set of 49 proteins showed significant responses to FL in three or four experimental groups, which included enhanced accumulation of proteins involved in photoprotection, cyclic electron flow around photosystem I, photorespiration, and glycolysis, while specific glutathione transferases and proteins involved in translation and chlorophyll biosynthesis were reduced in abundance. In addition, we observed pathway- and protein-specific changes predominantly at the end of day, whereas few changes were observed exclusively in the morning. Comparison of the proteome data with the matching transcript data revealed gene- and protein-specific responses, with several chloroplast-localized proteins decreasing in abundance despite increased gene expression under FL. Together, our data shows moderate but widespread alterations of protein abundance during acclimation to FL and suggests an important role of post-transcriptional regulation of protein abundance.
000874378 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000874378 536__ $$0G:(EU-Grant)639905$$aProPlantStress - Proteolytic processing in plant stress signal transduction and responses to abiotic stress and pathogen attack (639905)$$c639905$$fERC-2014-STG$$x1
000874378 588__ $$aDataset connected to CrossRef
000874378 7001_ $$0P:(DE-Juel1)151262$$aLe, Trang$$b1
000874378 7001_ $$0P:(DE-HGF)0$$aBahl, Marc-Oliver$$b2
000874378 7001_ $$0P:(DE-Juel1)129358$$aMatsubara, Shizue$$b3$$eCorresponding author$$ufzj
000874378 7001_ $$0P:(DE-Juel1)162356$$aHuesgen, Pitter$$b4$$eCorresponding author$$ufzj
000874378 773__ $$0PERI:(DE-600)2606823-0$$a10.3389/fgene.2020.00154$$gVol. 11, p. 154$$p154$$tFrontiers in genetics$$v11$$x1664-8021$$y2020
000874378 8564_ $$uhttps://juser.fz-juelich.de/record/874378/files/fgene-11-00154.pdf$$yOpenAccess
000874378 8564_ $$uhttps://juser.fz-juelich.de/record/874378/files/fgene-11-00154.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874378 8767_ $$92020-03-16$$d2020-03-16$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 2507.50, Reporting 202002
000874378 909CO $$ooai:juser.fz-juelich.de:874378$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000874378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129358$$aForschungszentrum Jülich$$b3$$kFZJ
000874378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162356$$aForschungszentrum Jülich$$b4$$kFZJ
000874378 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000874378 9141_ $$y2020
000874378 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874378 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874378 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874378 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT GENET : 2017
000874378 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874378 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874378 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874378 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874378 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874378 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874378 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000874378 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874378 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874378 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000874378 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874378 920__ $$lyes
000874378 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000874378 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000874378 980__ $$ajournal
000874378 980__ $$aVDB
000874378 980__ $$aUNRESTRICTED
000874378 980__ $$aI:(DE-Juel1)IBG-2-20101118
000874378 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000874378 980__ $$aAPC
000874378 9801_ $$aAPC
000874378 9801_ $$aFullTexts