000874383 001__ 874383
000874383 005__ 20251205100802.0
000874383 0247_ $$2doi$$a10.1016/j.physb.2020.412101
000874383 0247_ $$2ISSN$$a0921-4526
000874383 0247_ $$2ISSN$$a1873-2135
000874383 037__ $$aFZJ-2020-01403
000874383 082__ $$a530
000874383 1001_ $$0P:(DE-HGF)0$$aGeorgalas, C.$$b0
000874383 245__ $$aEffects of Cr-doping on the Jahn-Teller, the orthorhombic to rhombohedral, and the magnetic transitions in LaMn1-xCrxO3 compounds
000874383 260__ $$aAmsterdam$$bElsevier$$c2020
000874383 3367_ $$2DRIVER$$aarticle
000874383 3367_ $$2DataCite$$aOutput Types/Journal article
000874383 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764925605_13603
000874383 3367_ $$2BibTeX$$aARTICLE
000874383 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874383 3367_ $$00$$2EndNote$$aJournal Article
000874383 500__ $$aBitte Post-Print ergänzen
000874383 520__ $$aWe report on the electrical resistivity, the specific heat, and differential thermal analysis of LaMn1-xCrxO3 (x=0.00-0.35) polycrystalline compounds at T>300 K, as well as on their magnetic properties in the temperature range from 80 K to 280 K. The transport and the thermal results show that the isovalent substitution of Mn3+ by Cr3+ decreases the cooperative Jahn-Teller distortion and consequently affects orbital ordering in the whole concentration range. It is found that Cr drastically reduces the entropy change associated to the Jahn-Teller transition to negligible values for x≥0.20. The orthorhombic to rhombohedral transition is also displaced to lower temperatures by Cr-doping, however exhibiting non-zero associated enthalpy changes for all x. A ferromagnetic contribution develops in orbitally disordered alloys with x≥0.20. The paramagnetic to ferromagnetic transition temperatures show a similar variation upon increasing x as for the LaMn1-xGaxO3 system, implying a common origin for the ferromagnetic interaction in both systems.
000874383 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000874383 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000874383 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000874383 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000874383 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000874383 588__ $$aDataset connected to CrossRef
000874383 693__ $$0EXP:(DE-Juel1)ILL-IN12-20150421$$5EXP:(DE-Juel1)ILL-IN12-20150421$$eILL-IN12: Cold neutron 3-axis spectrometer$$x0
000874383 7001_ $$0P:(DE-HGF)0$$aSamartzis, A.$$b1
000874383 7001_ $$0P:(DE-Juel1)180764$$aBiniskos, Nikolaos$$b2$$ufzj
000874383 7001_ $$0P:(DE-HGF)0$$aSyskakis, E.$$b3
000874383 773__ $$0PERI:(DE-600)1466579-7$$a10.1016/j.physb.2020.412101$$gp. 412101 -$$p412101 -$$tPhysica / B$$v586$$x0921-4526$$y2020
000874383 8564_ $$uhttps://juser.fz-juelich.de/record/874383/files/___publ_Biniskos-1.pdf$$yRestricted
000874383 8564_ $$uhttps://juser.fz-juelich.de/record/874383/files/publ_biniskos_weiterer%20Versuch.pdf$$yRestricted
000874383 8564_ $$uhttps://juser.fz-juelich.de/record/874383/files/___publ_Biniskos-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000874383 8564_ $$uhttps://juser.fz-juelich.de/record/874383/files/publ_biniskos_weiterer%20Versuch.pdf?subformat=pdfa$$xpdfa$$yRestricted
000874383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180764$$aForschungszentrum Jülich$$b2$$kFZJ
000874383 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000874383 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000874383 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000874383 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000874383 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000874383 9141_ $$y2020
000874383 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874383 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874383 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874383 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYSICA B : 2017
000874383 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874383 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874383 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874383 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874383 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874383 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874383 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874383 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874383 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874383 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-06$$wger
000874383 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYSICA B : 2022$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000874383 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
000874383 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000874383 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000874383 9201_ $$0I:(DE-Juel1)JCNS-ILL-20110128$$kJCNS-ILL$$lJCNS-ILL$$x2
000874383 980__ $$ajournal
000874383 980__ $$aEDITORS
000874383 980__ $$aVDBINPRINT
000874383 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000874383 980__ $$aI:(DE-82)080009_20140620
000874383 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000874383 980__ $$aUNRESTRICTED
000874383 981__ $$aI:(DE-Juel1)JCNS-2-20110106