001     874385
005     20240619091254.0
024 7 _ |a 10.1002/pssa.201900924
|2 doi
024 7 _ |a 0031-8965
|2 ISSN
024 7 _ |a 1521-396X
|2 ISSN
024 7 _ |a 1862-6300
|2 ISSN
024 7 _ |a 1862-6319
|2 ISSN
024 7 _ |a 2128/25724
|2 Handle
024 7 _ |a WOS:000552069000010
|2 WOS
037 _ _ |a FZJ-2020-01405
082 _ _ |a 530
100 1 _ |a Guo, Ting
|0 P:(DE-Juel1)176886
|b 0
245 _ _ |a A Novel Ratiometric Electrochemical Biosensor Based on a Split Aptamer for the Detection of Dopamine with Logic Gate Operations
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600881866_17522
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A novel dual‐signal ratiometric electrochemical biosensor based on a split aptamer is developed. A common shortcoming of amperometric aptamer sensors is unspecific signaling due to ssDNA conformational flexibility. Herein, a ratiometric detection using two competitive redox‐labeled aptamer strands is proposed. The neurotransmitter dopamine (DA) is chosen as a model target due to its importance for signal processing in the central nervous system. A DA aptamer is split into two parts, S1 and S2, where strand S1 is tethered to the electrode, whereas the second strand is labeled with methylene blue (MB) and acts as a redox reporter. Another ssDNA strand (CS1) tagged with anthraquinone (AQ) is introduced, which is complementary to strand S1 and reports on surface‐tethered strands that remain in its virgin state. In the presence of DA, CS1 is released from the surface due to the formation of S1–S2–DA complexes, resulting in decreasing AQ and increasing MB Faraday currents. Furthermore, logic gate operations can be performed to either improve signal reliability or enlarge the detection range. This proof‐of‐concept study demonstrates that the splitting of a full aptamer into two parts together with the use of complementary ratiomeric tests can improve the reliability of the sensor response.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wu, Changtong
|0 P:(DE-Juel1)171355
|b 1
|u fzj
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 2
|u fzj
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 3
|e Corresponding author
773 _ _ |a 10.1002/pssa.201900924
|g p. 1900924 -
|0 PERI:(DE-600)1481091-8
|n 13
|p 1900924 -
|t Physica status solidi / A Applied research A
|v 217
|y 2020
|x 1862-6319
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874385/files/Guo_et_al-2020-physica_status_solidi_%28a%29.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874385/files/Guo_et_al-2020-physica_status_solidi_%28a%29.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874385
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128707
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI A : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21