000874401 001__ 874401
000874401 005__ 20240711114005.0
000874401 0247_ $$2doi$$a10.1016/j.nme.2019.01.030
000874401 0247_ $$2Handle$$a2128/24502
000874401 0247_ $$2WOS$$aWOS:000470746100009
000874401 037__ $$aFZJ-2020-01411
000874401 082__ $$a624
000874401 1001_ $$0P:(DE-Juel1)157772$$aHouben, Anne$$b0$$eCorresponding author$$ufzj
000874401 245__ $$aComparison of the hydrogen permeation through fusion relevant steels and the influence of oxidized and rough surfaces
000874401 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000874401 3367_ $$2DRIVER$$aarticle
000874401 3367_ $$2DataCite$$aOutput Types/Journal article
000874401 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583754444_28190
000874401 3367_ $$2BibTeX$$aARTICLE
000874401 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874401 3367_ $$00$$2EndNote$$aJournal Article
000874401 520__ $$aThe development and application of tritium permeation barriers (TPB) are crucial for safe and economical fusion reactor operation. In order to specify the requirements and important characteristics of TPB, the deuterium permeation flux through two different fusion relevant steels, namely Eurofer97 and 316L(N)-IG, were measured and compared. Furthermore, the influence of oxidized and rough surfaces on the deuterium permeation flux was investigated. With this study, the influence of technical or plasma roughened surfaces on the permeation behavior can be estimated.
000874401 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000874401 588__ $$aDataset connected to CrossRef
000874401 7001_ $$0P:(DE-HGF)0$$aEngels, J.$$b1
000874401 7001_ $$0P:(DE-Juel1)162160$$aRasiński, M.$$b2$$ufzj
000874401 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b3
000874401 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2019.01.030$$gVol. 19, p. 55 - 58$$p55 - 58$$tNuclear materials and energy$$v19$$x2352-1791$$y2019
000874401 8564_ $$uhttps://juser.fz-juelich.de/record/874401/files/1-s2.0-S2352179118301832-main.pdf$$yOpenAccess
000874401 8564_ $$uhttps://juser.fz-juelich.de/record/874401/files/1-s2.0-S2352179118301832-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874401 909CO $$ooai:juser.fz-juelich.de:874401$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157772$$aForschungszentrum Jülich$$b0$$kFZJ
000874401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b2$$kFZJ
000874401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b3$$kFZJ
000874401 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000874401 9141_ $$y2020
000874401 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874401 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000874401 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874401 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000874401 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874401 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874401 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874401 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000874401 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874401 920__ $$lyes
000874401 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000874401 9801_ $$aFullTexts
000874401 980__ $$ajournal
000874401 980__ $$aVDB
000874401 980__ $$aUNRESTRICTED
000874401 980__ $$aI:(DE-Juel1)IEK-4-20101013
000874401 981__ $$aI:(DE-Juel1)IFN-1-20101013