000874409 001__ 874409
000874409 005__ 20210130004652.0
000874409 0247_ $$2Handle$$a2128/24518
000874409 037__ $$aFZJ-2020-01419
000874409 041__ $$aEnglish
000874409 1001_ $$0P:(DE-HGF)0$$aBerg, Andrej$$b0
000874409 1112_ $$aNIC Symposium 2020$$cJülich$$d2020-02-27 - 2020-02-28$$wGermany
000874409 245__ $$aConformational Analysis of Dual-Scale Simulations of Ubiquitin Chains
000874409 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000874409 29510 $$aNIC Symposium 2020
000874409 300__ $$a137 - 146
000874409 3367_ $$2ORCID$$aCONFERENCE_PAPER
000874409 3367_ $$033$$2EndNote$$aConference Paper
000874409 3367_ $$2BibTeX$$aINPROCEEDINGS
000874409 3367_ $$2DRIVER$$aconferenceObject
000874409 3367_ $$2DataCite$$aOutput Types/Conference Paper
000874409 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1583841397_2514
000874409 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000874409 4900_ $$aPublication Series of the John von Neumann Institute for Computing (NIC) NIC Series$$v50
000874409 520__ $$aThe analysis of large-scale simulations of (bio)molecular systems generated on high performance computer (HPC) clusters poses a challenge on its own due to the sheer amount of high-dimensional data. To make sense of these data and extract relevant information, techniques such as dimensionality reduction and clustering are used. They can be applied to characterise the sampling of conformational phase space as well as to bridge between simulations on different levels of resolution in multiscale setups. Here, we present an approach to analyse long-timescale simulations and to characterise conformational ensembles of flexibly-linked multidomain proteins using the example of differently covalently conjugated ubiquitin chains. We have analysed exhaustive coarse grained (CG) and atomistic simulations with the help of collective variables (CVs) that are particularly suitable to describe the mutual orientation of different subunits and the protein-protein interfaces between them. These data have been further processed through different dimensionality reduction techniques (relying on multidimensional-scaling like approaches as well as neural network autoencoders). The resulting low-dimensional maps have been used for the characterisation of conformational states and the quantitative comparison of conformational free energy landscapes (from simulations at different levels of resolution as well as of different chain types). With this multiscale simulation and analysis approach it is possible to identify characteristic properties of ubiquitin chains in solution which can be subsequently correlated with experimentally observed linkage- and chain length-specific behaviour.
000874409 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000874409 7001_ $$0P:(DE-HGF)0$$aPeter, Christine$$b1$$eCorresponding author
000874409 7870_ $$0FZJ-2020-01353$$iIsPartOf
000874409 8564_ $$uhttps://juser.fz-juelich.de/record/874409/files/NIC_2020_Peter.pdf$$yOpenAccess
000874409 8564_ $$uhttps://juser.fz-juelich.de/record/874409/files/NIC_2020_Peter.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874409 909CO $$ooai:juser.fz-juelich.de:874409$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874409 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversität Konstanz$$b0
000874409 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000874409 9141_ $$y2020
000874409 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874409 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874409 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x0
000874409 980__ $$acontrib
000874409 980__ $$aVDB
000874409 980__ $$aUNRESTRICTED
000874409 980__ $$acontb
000874409 980__ $$aI:(DE-Juel1)NIC-20090406
000874409 9801_ $$aFullTexts