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The analysis of large-scale simulations of (bio)molecular systems generated on high perfor-

mance computer (HPC) clusters poses a challenge on its own due to the sheer amount of high-

dimensional data. To make sense of these data and extract relevant information, techniques

such as dimensionality reduction and clustering are used. They can be applied to characterise

the sampling of conformational phase space as well as to bridge between simulations on dif-

ferent levels of resolution in multiscale setups. Here, we present an approach to analyse long-

timescale simulations and to characterise conformational ensembles of flexibly-linked multido-

main proteins using the example of differently covalently conjugated ubiquitin chains. We have

analysed exhaustive coarse grained (CG) and atomistic simulations with the help of collective

variables (CVs) that are particularly suitable to describe the mutual orientation of different sub-

units and the protein-protein interfaces between them. These data have been further processed

through different dimensionality reduction techniques (relying on multidimensional-scaling like

approaches as well as neural network autoencoders). The resulting low-dimensional maps have

been used for the characterisation of conformational states and the quantitative comparison of

conformational free energy landscapes (from simulations at different levels of resolution as well

as of different chain types). With this multiscale simulation and analysis approach it is possible

to identify characteristic properties of ubiquitin chains in solution which can be subsequently

correlated with experimentally observed linkage- and chain length-specific behaviour.

1 Introduction

A special form of post translational modification of proteins is ubiquitylation, which de-

scribes the covalent attachment of the C-terminus of the Ubiquitin (Ub) protein to a lysine

side chain in a substrate protein by an isopeptide bond. Ub itself possesses seven lysine (K)

residues and additionally its N-terminal methionine (M) for further ubiquitylation which

allows for the formation of different types of polyubiquitin (polyUb) chains. These chains

can be selectively recognised by ubiquitin binding domains (UBDs). For some UBDs,

relative or absolute selectivity for distinct linkage types and chain lengths was shown.1, 2

Since all possible homotypic chain types, and even mixed and branched polyUb, were

found in cells so far, it is supposed that the Ub signalling system serves as a tool to store

and transmit information inside the eukaryotic cellular system.3, 4

The specific Ub recognition mechanisms are largely unknown, although some first in-

sights can be obtained from experimentally determined (static) structures. Recent studies,

however, are indicating that Ub dimers (diUb), which are the shortest possible Ub chains,

can assume linkage specific, dynamic ensembles of various conformations in solution.5–7

In the following we present our previous and ongoing work on the conformational char-

acterisation of Ub conjugates from molecular dynamics (MD) simulations. We are using

a dual-scale framework linking protein simulations on the atomistic and coarse grained

(CG) level to obtain free-energy landscapes and to identify low free-energy configurations,

which are representatives for the thermodynamically weighted conformational ensemble of
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and features can be assigned to certain landscapes areas.9 In contrast to high dimensional

representations, two-dimensional distributions can be compared easily qualitatively but

also quantitatively, for example with the Earth-Mover-Distance10 algorithm. Clustering

using k-means or other density based algorithms can be applied to such low dimensional

representations to identify conformational states.

For dimensionality reduction we have successfully used the Sketch-map algorithm in

the past, which is a multi-dimensional scaling like method which generates a map by it-

eratively minimising a nonlinear distance metric for a subset of representative data points

(landmarks), focusing on an intermediate range of distances between data points with the

help of a sigmoid function. All other points are subsequently projected into the map based

on their relative positions to those landmarks.11, 12 We found that Sketch-map gives good

results in combination with a suitable set of input CVs to characterise the interaction of

two Ub proteins/subunits to each other.8, 9 However, this algorithm can be computation-

ally demanding for very large data sets. Therefore, we extended the analysis and applied

a new algorithm called EncoderMap, which was developed and improved recently in our

group.13, 14 This method combines the advantage of the pairwise distance based cost func-

tion of Sketch-map with a neuronal network autoencoder for dimensionality reduction.

Here, we show that with this machine learning technique we were able to reproduce our

results with higher efficiency. Thus, the results are robust with respect to the exact dimen-

sionality reduction method used. Furthermore the use of EncoderMap allows to extend the

analysis to substantially larger data sets such as simulations of ubiquitin trimers (triUb)

and longer chains.

2 Methods

MD simulations

All simulations were performed with the GROMACS simulation package v5.15 A modified

version of the MARTINI force field v2.2 was used for CG simulations.8, 16 For further

details on the simulation setup and force field parameters please see Refs. 8 and 9. For each

diUb linkage type (8) 20 simulations (of 10 µs each) were performed (200 µs simulation

time for each linker). Two unlinked Ub were simulated in 80 simulations (10 µs each). Ub

trimers (triUb) were simulated for 100 µs in 20 simulations which sums up to 2000 µs for

each linker type. Structures were used every 100 ps for analysis.

EncoderMap

A detailed description on the functionality of EncoderMap can be found in Ref. 13 which

is available as a python package on github.com.a The network which was used to obtain

projections presented in Fig. 2 was trained on diUb conformations only. Based on the high-

dimensional distance distribution of CG data, the sigmoid function parameters σ = 5.9,

A = 12, B = 4, a = 2, b = 4 were chosen. This network was build up from 144 input nodes

followed by three hidden layers of 150 neurons for each layer and two bottle neck nodes

for the encoder part. The decoder part of the network was mirrored at the bottle neck layer.

ahttps://github.com/AG-Peter/encodermap
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moiety the minimum distance to any backbone bead in the proximal moiety is calculated

and vice versa. We used Sketch-map to obtain a low dimensional (2D) representation of

this 144 dimensional RMD space. Conformations which have similar RMD values are

positioned nearby in 2D while dissimilar conformations are separated. We calculated two

dimensional free energy landscapes for each linkage type which we used for qualitative

and quantitative interpretation of how the linkage positions influence the conformation of

diUb. Quantitative analysis was done by calculation of Earth-Mover-Distances (EMD),

which is a metric developed for image recognition but can also be used to compare two-

dimensional distributions. This combination of state of the art methods yields a versatile

tool for the investigation of protein-protein interaction.

While Sketch-map is rather good for dimensionality reduction of non linear high di-

mensional data it has also some drawbacks.18 The most striking for us was, that for train-

ing of the model only a limited amount of representative structures, so called landmarks

can be used (a few hundreds in the present case). They have to be selected carefully since

they should span the whole phase space of the data set. Once the model is trained, each

sample from the data set is projected into the map based on optimised positions relative to

the landmark points. Although, this method is much faster than conventional MDS with all

samples at the same time (which is only feasible with some thousand data points), it can

take several days to project a microsecond CG simulation data set. EncoderMap solves

these two problems by replacing the MDS algorithm with a neural network autoencoder.13

A neural network can be trained with a much larger data set (up to several million samples),

i. e. no landmarks are needed, and such a network, once trained, can be used to project a

huge amount of samples with an efficiency, that read and write operations (IO) become

the limiting factor. By adding a MDS like pairwise-distance cost contribution to the nor-

mal autoencoder cost function upon training, EncoderMap aims (similarly to Sketch-map)

at reproducing relative distances between data points in the low-dimensional projection

(latent space).

Here, we have applied EncoderMap to the CG data set from Ref. 8 to see if this al-

ters the results of our analysis of diUb conformational landscapes (Fig. 2A). Using very

similar parameters for the sigmoid function in the Sketch-map cost contribution of Enco-

derMap, which determine the outcome of the projection to a large extent, we were able

to obtain conformational landscapes which are strikingly similar compared to the previ-

ously obtained Sketch-map projections (see Fig. 2 in Ref. 8). A significant difference is

observed only for the K48 linked dimer which now spans almost the whole conforma-

tional space accessible to diUb. However, this is not due to the dimensionality reduction

technique but due to the fact that in the meantime we have also expanded the conforma-

tional ensembles by 66 % for each linkage type by addition of multiple new independent

runs. It turns out that the K48 ensemble had not been fully converged. As in Ref. 8 the

eight two-dimensional distributions are compared to each other by calculating pair-wise

EMD which are normalised to a range between zero (for identical distributions) and one,

for two very dissimilar maps, K11 and K27 in this case. In Fig. 2B the EMDs for the

EncoderMap projections are compared to the data obtained with Sketch-map. Although,

some values are different for EncoderMap projections (red bottom half matrix) compared

to Sketch-map projections (upper gray half matrix), the overall similarity map for diUb is

only slightly affected (Fig. 2C). This similarity map is obtained by again using MDS with

the pair-wise EMDs as input for optimisation (the positioning from Ref. 8 has been used
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for training. We found, that the set of CVs which we used as input for dimensionality

reduction introduces an arbitrary ordering of chain A and B, which had no evident impact

while used for diUb. In a dimer topology chain A is called distal moiety and is linked via

its C-terminus to the lysine side chain of moiety B, also called proximal. For two unlinked

Ub, which are obviously identical, this is not true any more and the high dimensional data

set contains samples which are identical if one would change the chain order from AB to

BA. Interestingly, this feature manifests as a two-fold symmetry in the low dimensional

projection (as discussed and demonstrated in detail in Ref. 9).

With this model we were able to obtain proper projections for diUb and investigate the

immediate (linkage specific) effect of covalent linkage formation on the protein-protein in-

terface between two Ub proteins. Since conformations of diUb are projected into the two-

dimensional representation of two unlinked Ub, one can compare these two landscapes

directly and observe that some linkage types (e. g. K63) select already present conforma-

tions while others (e. g. K6) obtain conformations which are not stable without any linker.

This might be critical for the investigation of the Ub ligase mechanism which happens

by a cascade of reactions involving a linkage and substrate specific combination of three

enzymes.3 Additionally, by training the model on a set of configurations which can be

formed by two unlinked proteins and should therefore contain all possible configurations

at least to some extent, the chance is reduced to obtain unreasonable positions in 2D if new

diUb conformations are added to the projection.

In our present work, thanks to the ability of EncoderMap to process a much larger

data set for training, we were able to improve the projection of Ub conformations even

further – and consequently enhance the characterisation of the protein-protein interface

formed by two Ub proteins. Exploiting the inherent symmetry of the projection problem,

due to the equivalence of the Ub proteins, we can further improve the map by doubling

the high dimensional RMD data set for two unlinked Ub by just changing the chain order.

With EncoderMap we are able to use this large data set (4.6 · 106 samples) for training to

obtain an almost perfectly symmetric landscape (Fig. 3A). This projection divides clearly

configurations with no contacts between the two chains (high centre of geometry distance,

see small green histogram) from aggregated structures (the red highly populated spots in

the main map). One can find configurations with a symmetric interaction interface along

the symmetry axis and – as it was shown in Ref. 9 already – configurations from two

minima which are mirrored at this symmetry axis can be aligned almost perfectly if the

chain order is interchanged. Certain interaction interface features, like a high amount of

β-sheet contacts (see small orange histogram) can be assigned to certain areas on the map

and enhances the interpretation of the configurational space.

The EncoderMap neuronal network, once trained, can be now used to project diUb

configurations in a very effective way (shown in Fig. 3B for all linkages). In these land-

scapes, diUb conformations occupy only the area with lower centre of geometry distance

which is obviously due the linkage constraint. We can observe similar overlaps for cer-

tain linkage types and we can repeat the quantitative comparison by calculating pair-wise

EMD for these distributions, which are then used for MDS optimisation to obtain a simi-

larity map (Fig. 3C). Initial positions were again taken from Ref. 8. Although all markers

(saturated colours) are shifted slightly compared to the reference data (pale colours), the

overall picture persists, except for K48 which we already identified to be different due to

additional sampling compared to the previously published data.

143





4 Concluding Remarks

In the present work we present the application of EncoderMap to efficiently obtain low-

dimensional representations of complex conformational ensembles of protein conjugates.

These representations allow for conformational clustering but also for the visualisation of

certain properties and quantitative comparison between histograms of different data sets.

With this, intuitive examination of large simulated data sets is possible. Furthermore, se-

lected CVs (RMD) as input for dimensionality reduction are highly transferable and can

be used to characterise protein-protein interaction of unlinked proteins as well as certain

parts of larger conjugates. In our ongoing work we use the combination of tools presented

here to characterise polyUb (up to tetramers) conformations for all homotypic chain types.

By this we hope to extend our knowledge about the linkage type and chain length specific

conformational properties of polyUb and with this contribute to the understanding of the

Ub recognition mechanism.
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