
Nuclear Lattice Effective Field Theory: Status
and Perspectives

U.-G. Meißner for the NLEFT Collaboration

published in

NIC Symposium 2020
M. Müller, K. Binder, A. Trautmann (Editors)

Forschungszentrum Jülich GmbH,
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I give an outline of the recent developments in nuclear lattice effective field theory, which is

continuing to push the boundaries of ab initio nuclear many-body calculations, both in terms of

nuclear structure and nuclear reactions. This remarkable progress has been made possible by

recent dramatic increases in HPC resources, as well as advances in computational methods and

algorithmic developments.

1 Introduction

Recent advances in high-performance computing (HPC) have enabled nuclear physics to

enter a new and exciting era. Calculations of nuclear structure and reactions that were once

considered nearly impossible are now being readily performed. The research performed

by the NLEFT (Nuclear Lattice Effective Field Theory) collaboration is at the forefront

of this development. Such calculations are ab initio in the sense that they use nuclear

forces derived from the chiral effective Lagrangian of Quantum Chromodynamics (QCD),

which is the underlying theory that describes the interactions of quarks and gluons. For

few-nucleon systems, the chiral effective field theory (EFT) for the forces between two,

three and four nucleons have been worked out to high orders in the chiral power counting,

see e. g. Ref. 1. This force consists of long-ranged exchanges of one or more pions, and

shorter-ranged multi-nucleon contact interactions. By combining these EFT forces with

Monte Carlo methods developed by the lattice QCD community, the NLEFT collaboration

has successfully studied the properties of p-shell nuclei (such as 12C and 16O). These nuclei

have formed the calculational boundary of more traditional nuclear many-body techniques,

such as Green’s function Monte Carlo.

With recent advances in the methods and algorithms of NLEFT, this boundary has been

pushed further by recent ab initio calculations of nuclei in the sd-shell and beyond. Fur-

thermore, the NLEFT formalism has been developed and adapted to include the treatment

of nuclear reactions. This ongoing line of research is now rapidly addressing key questions

related to the formation of elements, including those that enable life as we know it. In the

following, we briefly review the motivation and methodology behind the NLEFT formal-

ism. We also present recent highlights of our research and conclude with an outlook on

future progress.
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2 Theoretical Background of NLEFT Simulations

Nuclei are self-bound systems of nucleons (protons and neutrons). As the nucleons them-

selves consist of quarks and gluons, and hence are not fundamental degrees of freedom,

the forces between nucleons are not completely given in terms of two-body interactions,

but include three-body and higher order interaction terms. Computing the properties of

multi-nucleon systems presents a very difficult challenge. The complicated structure of

the interaction coupled with the quantum mechanical nature of such systems leads to an

exponential growth in the computational effort as a function of the number of nucleons A.

For A ≤ 4, bound state energies and scattering phase shifts have traditionally been calcu-

lated by exact (numerical) solutions of the Lippmann-Schwinger or Faddeev-Yakubowsky

equations. For A ≥ 5, well established many-body techniques have been developed, such

as the no-core shell model and coupled-cluster methods. These ultimately rely on the di-

rect diagonalisation of a large matrix M in order to solve a problem of the form Mx = b.
As the size of M increases exponentially, the memory and processing power of currently

available HPC systems are quickly exhausted, which confines such methods to systems

with A ≤ 12. In order to push beyond A = 12, simplifications to the interaction between

nucleons as well as other assumptions become necessary.

In the context of QCD, systems of quarks and gluons also exhibit exponential scaling

in the number of degrees of freedom, but instead of relying on direct diagonalisation in

order to calculate observables, methods have been developed to stochastically estimate

observables. The quarks and gluons are placed on a discrete space-time lattice, and Monte

Carlo sampling of the propagation of the particles is performed in order to capture the most

relevant contributions to a given observable. Such “lattice QCD” calculations provide a

much reduced calculational complexity. Moreover, lattice QCD calculations are fully non-

perturbative and provide the only known rigorous way to compute the properties of QCD in

the non-perturbative (low-energy) regime. Still, it should be kept in mind that the stochastic

nature of lattice QCD induces an associated uncertainty in each calculated observable, in

addition to possible issues arising from numerical sign oscillations (the “sign problem”)

or from an unfavourable signal-to-noise ratio, particularly when nucleons (baryons) are

involved.

While a formalism similar to lattice QCD is used in NLEFT calculations, in the latter

case the nucleons form the degrees of freedom that propagate on the space-time lattice,

such that the interactions between nucleons are provided by chiral EFT. The stochastic

nature of the Monte Carlo importance sampling of the nucleons’ trajectories provides a

softer scaling of computational complexity with A. This, in turn, is what allows NLEFT

to push the boundaries of ab initio calculations beyond those reached by more traditional

methods.

3 Nuclear Physics on a Space-Time Lattice

In NLEFT simulations, Euclidean space-time is discretised on a torus of volume L3
s × Lt,

where Ls is the side length of the (cubic) spatial dimension, and Lt denotes the extent of

the Euclidean time dimension. The lattice spacing in the spatial dimensions is denoted a,

analogously to at in the temporal dimension. The maximal momentum on the lattice is thus

pmax ≡ π/a, which serves as the UV regulator of the theory. Nucleons exist as pointlike
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particles on the lattice sites, and the interactions between nucleons (pion exchanges and

contact terms) are treated as insertions on the nucleon world lines via auxiliary-field repre-

sentations. The nuclear forces have an approximate spin-isospin SU(4) symmetry (Wigner

symmetry) that is of fundamental importance in suppressing numerical sign oscillations

that plague any Monte Carlo simulation of strongly interacting fermions at finite density.

This is in contrast to lattice QCD, where any finite baryon chemical potential renders the

Monte Carlo simulation unfeasible.

We compute the properties of multi-nucleon systems by means of the transfer matrix

projection Monte Carlo method. There, each nucleon is treated as a single particle propa-

gating in a fluctuating background of pion and auxiliary fields, the latter representing the

multi-nucleon contact interactions. Due to the very strong binding between four nucleons

occupying the same lattice site, we find that the convergence of the chiral EFT expansion

can be greatly accelerated by means of smeared leading-order (LO) contact interactions.

We start the Euclidean time projection from a Slater determinant ΨA of single-nucleon

standing waves for Z protons and N neutrons (with A = Z+N ) in a periodic cube. More

complicated initial states, such as α-clusters or alike, are also possible. We then use a

Wigner SU(4) symmetric Hamiltonian as a computationally inexpensive filter for the first

few Euclidean time steps, which also suppresses sign oscillations dramatically. Finally, we

apply the full LO chiral EFT Hamiltonian and calculate the ground state energy and other

properties from the correlation function

Z(t) ≡ 〈ΨA| exp(−tH)|ΨA〉 = Tr{MLt} (1)

in the limit of large Euclidean projection time t. M is the usual normal-ordered transfer

-matrix operator and Lt is the number of Euclidean time steps. Higher-order contribu-

tions, such as the Coulomb repulsion between protons and other isospin-breaking effects

(due to the light quark mass difference), are computed as perturbative corrections to the

LO amplitude. The properties of excited states are obtained from a multi-channel pro-

jection Monte Carlo method. In our LO lattice action, the nucleon kinetic energy and

momentum-dependent smearing factors of the contact interactions are treated using O(a4)
improvement. Moreover, all lattice operators are included up to O(Q3), where Q denotes

the momentum transfer between pions and nucleons. This includes operators related to

the breaking of rotational symmetry on the lattice. The strengths of such operators can be

tuned to eliminate unphysical effects, such as the mixing of the 3D3 partial wave into the
3S1-3D1 channel. Similarly, the breaking of Galilean invariance in moving frames is taken

care of. A much more detailed description is given in the recent monograph.2

4 New Algorithms and Recent NLEFT Results

We shall now discuss the highlights of selected recent NLEFT calculations, which demon-

strate both the strengths of the NLEFT approach as well as recent algorithmic develop-

ments. We start with the latter.

4.1 The Pinhole Algorithm

Auxiliary-field Monte Carlo (AFMC) simulations are efficient for computing the quan-

tum properties of systems with attractive pairing interactions. By the calculating the exact
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quantum amplitude for each configuration of auxiliary fields, we obtain the full set of

correlations induced by the interactions. However, the exact quantum amplitude for each

auxiliary field configuration involves quantum states which are superpositions of many dif-

ferent centre-of-mass positions. Therefore information about density correlations relative

to the centre of mass is lost. The pinhole algorithm3 is a new computational approach

that allows for the calculation of arbitrary density correlations with respect to the centre of

mass. As this was not possible in all previous AFMC simulations, adaptations of this tech-

nique should have wide applications to hadronic, nuclear, condensed matter, and ultracold

atomic simulations.

Let ρi,j(n) be the density operator for nucleons with spin i and isospin j at lattice site

n,

ρi,j(n) = a†i,j(n)ai,j(n) (2)

We construct the normal-ordered A-body density operator

ρi1,j1,···iA,jA(n1, · · ·nA) = : ρi1,j1(n1) · · · ρiA,jA(nA) : (3)

In the A-nucleon subspace, we note the completeness identity
∑

i1,j1,···iA,jA

∑

n1,···nA

ρi1,j1,···iA,jA(n1, · · ·nA) = A! (4)

The new feature of the pinhole algorithm is that MC importance sampling is performed

according to the absolute value of the expectation value

〈Ψf |M
L′

t

∗ MLt/2ρi1,j1,···iA,jA(n1, · · ·nA)M
Lt/2M

L′
t

∗ |Ψi〉 (5)

Here, M t is the transfer matrix at time t of dimension A × A and M t
∗ is referring to the

SU(4) invariant transfer matrix used at the beginning and at the end of the time evolution

to tame the sign problem, see e. g. Ref. 2. Due to the completeness identity Eq. (4), the

sum of the amplitude in Eq. (5) over n1, · · ·nA and i1, j1, · · · iA, jA gives A! times the

amplitude without any insertion of the A-body density,

〈Ψf |M
L′

t

∗ MLtM
L′

t

∗ |Ψi〉 (6)

The pinhole locations n1, · · ·nA and spin-isospin indices i1, j1, · · · iA, jA are sampled by

Metropolis updates, while the auxiliary fields are sampled by the hybrid MC algorithm (see

also below). In the left panel of Fig. 1 we show a sketch of the pinhole locations and spin-

isospin indices for the operator ρi1,j1,···iA,jA(n1, · · ·nA) inserted at time t = Ltat/2. We

obtain the ground state expectation value by extrapolating to the limit of infinite projection

time.

For spatial lattice spacing a, the coordinates ri of each nucleon on the lattice is an

integer vector ni times a. We do not consider mass differences between protons and neu-

trons for the moment. Since the centre of mass is a mass-weighted average of A nucleons

with the same mass, the centre-of-mass position rCM is an integer vector nCM times a/A.

Therefore the density distribution has a resolution scale that is A times smaller than the

lattice spacing. In order to determine the centre-of-mass position rCM, we minimise the

squared radius
∑

i

|rCM − ri|
2

(7)
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density operator ρ̃(n) is defined in the same manner as in Ref. 3,

ρ̃(n) =
∑

i

ã†i (n)ãi(n) + sL
∑

|n′−n|=1

∑

i

ã†i (n
′)ãi(n

′) (10)

where i is the joint spin-isospin index and the smeared annihilation and creation operators

are defined as

ãi(n) = ai(n) + sNL

∑

|n′−n|=1

ai(n
′) (11)

The summation over the spin and isospin implies that the interaction is SU(4) invariant.

Note that we perform local (L) as well as non-local smearing (NL). In the latter case,

the nucleon creation/annihilation operators are distributed over a lattice point and its six

neighbours. The parameter sL controls the range of the local part of the interaction, while

sNL controls the range of the nonlocal (i. e. velocity-dependent) part of the interaction.

The parameters C2 and C3 give the strength of the two-body and three-body interactions,

respectively. In what follows, we use a lattice spacing a = 1.32 fm, which corresponds

to a momentum cutoff Λ = π/a ≈ 465 MeV. The dynamics with momentum Q much

smaller than Λ can be well described and residual lattice artifacts are suppressed by powers

of Q/Λ, see Ref. 7. For systems with more than three nucleons, we use AFMC lattice

simulations for a cubic periodic box with length L, see Ref. 2. For nuclei with A < 30
nucleons, we take L ≥ 8, with larger values of L for cases where more accuracy is desired.

For nuclei with A ≥ 30 we take L = 9. The temporal lattice spacing is 0.001 MeV−1

and the projection time is set to 0.3 MeV−1. We find that these settings are enough to

provide accurate results for systems with A ≤ 48. We also use the recently-developed

pinhole algorithm3 in order to calculate density distributions and charge radii. We use

few-body data with A ≤ 3 to fix the interaction coefficients C2 and C3, while the range

of the interactions are controlled by the parameters sNL and sL. In the few-body sector,

the two smearing parameters sNL and sL produce very similar effects and are difficult to

distinguish from few-body data alone. Therefore, to pin down sL and sNL more precisely,

we require fits to heavier nuclei as described in detail in Ref. 4. The full set of optimised

parameters are C2 = −3.41 × 10−7 MeV−2, C3 = −1.4 × 10−14 MeV−5, sNL = 0.5,

and sL = 0.061.

Using this highly improved action, we have calculated the binding energies for 86

bound even-even nuclei (even number of protons, even number of neutrons) with up to

A = 48 nucleons, see the left panel of Fig. 3. Due to the SU(4) symmetry, there is no

sign problem and all of the MC error bars are smaller than the size of the symbols. The

remaining errors due to imaginary time and volume extrapolations are also small, less than

1 % relative error, and thus are also not explicitly shown. The general trends for the binding

energies along each isotopic chain are well reproduced. In particular, the isotopic curves

on the proton-rich side are close to the experimental results. The discrepancy is somewhat

larger on the neutron-rich side and is a sign of missing effects such as spin-dependent

interactions. With the same interaction, one can also calculate the charge density profile of

a given nucleus. This has been done in Ref. 4 for 16O and 40Ca and the results are quite

accurate for such a simple nuclear interaction.

Further, predictions can be made for pure neutron matter (NM), see the right panel

of Fig. 3. There, we show the calculated NM energy as a function of the neutron den-

sity and the comparison with other calculations using next-to-next-to-next-to-leading-order
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H = H0 + V is given by:

H0 = H↑
0 +H↓

0 , V = C0

∑

~n

ρ↑(~n) ρ↓(~n)

Hs
0 =

1

2m

3
∑

l=1

∑

~n

[

2a†s(~n)as(~n)− a†s(~n)as(~n+ l̂)− a†s(~n)as(~n− l̂)
]

(12)

with s =↑, ↓, l̂ is a unit vector on the lattice and C0 is tuned to the binding energy of the

shallow dimer consisting of one ↑ and the ↓-particle. It is advantageous to work in the

occupation number basis,

∣

∣χ↑
nt
, χ↓

nt

〉

=
∏

~n

{

[

a†↑(~n)
]χ↑

nt
(~n) [

a†↓(~n)
]χ↓

nt
(~n)

}

, χs
nt
(~n) = 0 or 1 (13)

This allows to calculate the elements of the reduced transfer matrix,

〈χ↑
nt+1, χ

↓
nt+1|M |χ↑

nt
, χ↓

nt
〉 (14)

In computing the transfer matrix, one has to deal with two different cases. First, if the

impurity performs one spatial hop,

M~n′′±l̂,~n′′ =
( αt

2m

)

: exp
[

−αtH
↑
0

]

: (15)

with αt = at/a. If the impurity worldline remains stationary, the corresponding transfer

matrix reads

M~n′′,~n′′ =

(

1−
3αt

m

)

: exp

[

−αtH
↑
0 −

αtC0

1− 3αt/m
ρ↑(~n

′′)

]

: (16)

Note that these reduced transfer matrices are just one-body operators on the linear space of

the ↑-particles. With that, one can proceed as usual in NLEFT.

To show the power of the ILMC, we present in the right panel of Fig. 4 results for the

ground state energy of a system of 9 |↑〉+ 1 |↓〉 particles in a volume L3 = 103 (N = 10)

with a zero-range interaction, using both conventional AFMC and the ILMC.17 The ground

state energy ǫ is given by:

ǫ =
1

at
lim

Lt→∞
ln

Z(Lt − 1)

Z(Lt)
(17)

The ILMC clearly outperforms AFMC, because it is computationally simpler and faster

and also has far smaller sign oscillations (see the detailed discussion in Ref. 17).

As a first application of the ILMC, we considered the polaron problem in two and three

dimensions.17 As a benchmark of the method, we calculated the universal polaron energy

in three dimensions (3D) in the scale-invariant unitarity limit and found agreement with

published results, see the left panel of Fig. 5. Next, consider attractive polarons in two

dimensions. There is a very interesting and important question as to whether a polaron-

molecule transition occurs in the ground state as a function of the interaction strength.

At present cold-atom experiments are not yet conclusive on the question of a transition.

The existence and nature of such a transition impacts the overall phase diagram for spin-

imbalanced 2D Fermi gas. The theoretical investigations on this issues were so far in-

conclusive, see the discussion in Ref. 17. We have investigated this problem considering
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Figure 5. Left panel: The 3D unitarity limit polaron energy ǫP in units of the Fermi energy ǫF as a function of

the inverse particle number 1/N . The square is the ILMC result in the thermodynamic limit N → ∞, while the

triangle gives the diagrammatic Monte Carlo result from Ref. 18. Right panel: Ground state energy as a function

of the dimensionless parameter η = (1/2) ln ((2ǫF /|ǫB |)) in comparison with diagrammatic MC results.19 The

data are from Ref. 20. The vertical band represents the region where the crossover transition from a polaron to a

molecule occurs.

again one down-spin impurity and N up-spin particles in the limit of zero-range attractive

interactions. The delta function interaction is tuned according to the two-body bound state

energy, |ǫB |. Using ILMC, we calculated the polaron energy as a fraction of the up-spin

Fermi energy. The coupling constant was tuned in order to get the two-body bound states

with binding momentum κB =
√

m|ǫB | equal to 0.22/a, 0.31/a, 0.43/a, 0.53/a, and

0.62/a. We ran simulations for several different lattice areas, L2, and several different par-

ticle numbers, N . The lattice sizes go from L2×Lt = 202×100 to L2×Lt = 802×700.

For each L2 and N , the ground state energy was obtained by extrapolating to the limit

Lt → ∞ by fitting the Euclidean time projection amplitude to the asymptotic function

ǫ0 + α exp(−δ · t). To magnify the details, we subtracted the dimer energy in vacuum,

ǫB, from the polaron energies and scaled by ǫF, the majority up-spin particle Fermi energy.

In Fig. 5 we show the subtracted-scaled polaron energy (ǫp + |ǫB|)/ǫF versus the dimen-

sionless parameter η ≡ 1
2 ln

(

2ǫF

|ǫB|

)

, which characterises the strength of the interaction. The

simulations are done with N = 21 and N = 20 up-spin particles. For comparison we have

plotted the diagrammatic Monte Carlo results from Ref. 19 and variational results from

Ref. 20. We find good agreement with the data in the weak-coupling region, η > 1. In

the very strong coupling limit η → −∞, one expects (ǫp + |ǫB|)/ǫF to approach −1 from

above. This corresponds to a tightly-bound molecule that has pulled one up-spin from the

Fermi sea and is only weakly repelled by the remaining up spins. Perhaps most interesting

is that the lattice results show a smooth dependence on energy in the intermediate region

−0.90 < η < −0.75. We interpret this as evidence for a smooth crossover from fermionic

polaron to bosonic molecule. In order to uncover the underlying nature of the polaron-

molecule transition, we have used ILMC to measure the density-density correlation func-

tion between the impurity and the majority particles. As discussed in Ref. 17, there is no

sign of a sharp phase transition such as a divergence of the correlation function or non-

analytic dependence on the interaction strength. This shows that the polaron-molecule

transition is a smooth crossover. These interesting results clearly show the power of the

ILMC and time is ripe now to apply it to the physics of hyper-nuclei.
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5 Outlook: What is next?

At this time, NLEFT has matured into a well-established ab initio framework at the fore-

front of the theory of nuclear structure and reactions. The ongoing development of both

theory and algorithms is expected to provide further insight into a number of key problems,

and to further extend the applicability of NLEFT to heavier nuclei. For example, NLEFT

is well placed to address the issues of the mechanism underlying pairing in nuclei, the mi-

croscopic origin of the so-important spin-orbit force in nuclei or the precise location of the

drip lines of the nuclear chart. A slight modification of the pinhole algorithm, the so-called

trace pinhole algorithm, allows one to perform first principles calculations in nuclear ther-

modynamics. Questions of high importance are the precise location of the liquid-gas phase

transition in the phase diagram of baryonic matter or the cluster-fragment distribution in

the collisions of mid-mass nuclei measured at various facilities world-wide. Scattering

processes at stellar energies can also be addressed, in particular the so-called “holy grail”

of nuclear astrophysics, i. e. the 12C(α, γ)16O reaction at stellar energies, is within reach.

In short, NLEFT appears headed towards exciting times of progress and discoveries.
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